This yields a log(#ast_nodes) worst-case improvement with matchers like
stmt(unless(hasAncestor(...))).
Also made the order of visitation for ancestor matches BFS, as the most
common use cases (for example finding the closest enclosing function
definition) rely on that.
llvm-svn: 177081
This does not yet implement the LimitNode approach discussed.
The impact of this is an O(n) in the number of nodes in the AST
reduction of complexity for certain kinds of matchers (as otherwise the
parent map gets recreated for every new MatchFinder).
See FIXMEs in the comments for the direction of future work.
llvm-svn: 176251
First, this implements a match() method on MatchFinder; this allows us
to get rid of the findAll implementation, as findAll is really a special
case of recursive matchers on match.
Instead of findAll, provide a convenience function match() that lets
users iterate easily over the results instead of needing to implement
callbacks.
llvm-svn: 174172
The RecursiveASTVisitor assumes that any given Traverse-method can be called with a NULL-node. So the subclass needs to handle these appropriately.
llvm-svn: 167850
Often users of the ASTMatchers want to add tasks that are done once per
translation unit, for example, cleaning up caches. Combined with the
interception point for the end of source file one can add to the factory
creation, this covers the cases we've seen users need.
llvm-svn: 167271
This implements has(), hasDescendant(), forEach() and
forEachDescendant() for NestedNameSpecifier and NestedNameSpecifierLoc
matchers.
Review: http://llvm-reviews.chandlerc.com/D86
llvm-svn: 167017
Without this patch, the isDerivedFrom matcher asserts in the
"assert(ClassDecl != NULL);" in the new test, as a
DependentTemplateSpecilizationType is not a sub-type of
TemplateSpecializationType and also does not offer getAsCXXRecordDecl().
I am not sure why this did not cause problems before. It is now (after
the changed implementation of isDerivedFrom) easier to write a matcher
that actually gets into this branch of the code.
llvm-svn: 164127
class itself. This caused some confusion (intuitively, a class is not
derived from itself) and makes it hard to write certain matchers, e.g.
"match and bind any pair of base and subclass".
The original behavior can be achieved with a new isA-matcher. Similar
to all other matchers, this matcher has the same behavior and name as
the corresponding AST-entity - in this case the isa<>() function.
llvm-svn: 163385
Implements the hasAncestor matcher. This builds
on the previous patch that introduced DynTypedNode to build up
a parent map for an additional degree of freedom in the AST traversal.
The map is only built once we hit an hasAncestor matcher, in order
to not slow down matching for cases where this is not needed.
We could implement some speed-ups for special cases, like building up
the parent map as we go and only building up the full map if we break
out of the already visited part of the tree, but that is probably
not going to be worth it, and would make the code significantly more
complex.
Major TODOs are:
- implement hasParent
- implement type traversal
- implement memoization in hasAncestor
llvm-svn: 163382
Due to DynTypedNode the basic dynamically typed matcher interface can now be simplified.
Also switches the traversal interfaces to use DynTypedNode;
this is in preperation for the hasAncestor implementation, and
also allows us to need fewer changes when we want to add new
nodes to traverse, thus making the code a little more decoupled.
Main design concerns: I went back towards the original design
of getNodeAs to return a pointer, and switched DynTypedNode::get
to always return a pointer (in case of value types like QualType
the pointer points into the storage of DynTypedNode, thus allowing
us to treat all the nodes the same from the point of view of a
user of the DynTypedNodes.
Adding the QualType implementation for DynTypedNode was needed
for the recursive traversal interface changes.
llvm-svn: 163212