Older Book-E cores, such as the PPC 440, support only msync (which has the same
encoding as sync 0), but not any of the other sync forms. Newer Book-E cores,
however, do support sync, and for performance reasons we should allow the use
of the more-general form.
This refactors msync use into its own feature group so that it applies by
default only to older Book-E cores (of the relevant cores, we only have
definitions for the PPC440/450 currently).
llvm-svn: 218923
Summary:
Atomic loads and store of up to the native size (32 bits, or 64 for PPC64)
can be lowered to a simple load or store instruction (as the synchronization
is already handled by AtomicExpand, and the atomicity is guaranteed thanks to
the alignment requirements of atomic accesses). This is exactly what this patch
does. Previously, these were implemented by complex
load-linked/store-conditional loops.. an obvious performance problem.
For example, this patch turns
```
define void @store_i8_unordered(i8* %mem) {
store atomic i8 42, i8* %mem unordered, align 1
ret void
}
```
from
```
_store_i8_unordered: ; @store_i8_unordered
; BB#0:
rlwinm r2, r3, 3, 27, 28
li r4, 42
xori r5, r2, 24
rlwinm r2, r3, 0, 0, 29
li r3, 255
slw r4, r4, r5
slw r3, r3, r5
and r4, r4, r3
LBB4_1: ; =>This Inner Loop Header: Depth=1
lwarx r5, 0, r2
andc r5, r5, r3
or r5, r4, r5
stwcx. r5, 0, r2
bne cr0, LBB4_1
; BB#2:
blr
```
into
```
_store_i8_unordered: ; @store_i8_unordered
; BB#0:
li r2, 42
stb r2, 0(r3)
blr
```
which looks like a pretty clear win to me.
Test Plan:
fixed the tests + new test for indexed accesses + make check-all
Reviewers: jfb, wschmidt, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5587
llvm-svn: 218922
Do not eliminate the frame pointer if there is a stackmap or patchpoint in the
function. All stackmap references should be FP relative.
This fixes PR21107.
llvm-svn: 218920
This patch defines a new iterator for the imported symbols.
Make a change to COFFDumper to use that iterator to print
out imported symbols and its ordinals.
llvm-svn: 218915
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
elements as well as integer elements in order to form simpler shuffle
patterns.
This is the primary reason why we were failing to match some of the
2-and-2 floating point shuffles such as PR21140. Even after fixing this
we need to support some extra patterns in the backend in order to match
the resulting X86ISD::UNPCKL nodes into the correct instructions. This
commit should fix PR21140 and includes more comprehensive testing of
insertion patterns in v4 shuffles.
Not all of the added tests are beautiful. For example, we don't have
clever instructions to insert-via-load in the integer domain. There are
also some places where we aren't sufficiently cunning with our use of
movq and movd, but that's future work.
llvm-svn: 218911
When unsafe-fp-math is enabled, we can turn sqrt(X) * sqrt(X) into X.
This can happen in the real world when calculating x ** 3/2. This occurs
in test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c.
Differential Revision: http://reviews.llvm.org/D5584
llvm-svn: 218906
floating point and integer domains.
Merge the AVX2 test into it and add an extra RUN line. Generate clean
FileCheck statements with my script. Remove the now merged AVX2 tests.
llvm-svn: 218903
When the flag is given, the command prints out the COFF import table.
Currently only the import table directory will be printed.
I'm going to make another patch to print out the imported symbols.
The implementation of import directory entry iterator in
COFFObjectFile.cpp was buggy. This patch fixes that too.
http://reviews.llvm.org/D5569
llvm-svn: 218891
My commit rL216160 introduced a bug PR21014: IndVars widens code 'for (i = ; i < ...; i++) arr[ CONST - i]' into 'for (i = ; i < ...; i++) arr[ i - CONST]'
thus inverting index expression. This patch fixes it.
Thanks to Jörg Sonnenberger for pointing.
Differential Revision: http://reviews.llvm.org/D5576
llvm-svn: 218867
This file isn't really doing anything useful. Many of the tests that
seem to be combined are also repeats from other test files. Many of the
other tests, despite the comment that they should be combined into
a single shuffle... well... aren't combined into a single shuffle.
=/
llvm-svn: 218862
least seem *slightly* more interesting test wise, although given how
spotily we actually combine anything, I remain somewhat suspicious.
llvm-svn: 218861
checks for all the ISA variants.
If the SSE2 checks here terrify you, good. This is (in large part) the
kind of amazingly bad code that is holding LLVM back when vectorizing on
older ISAs.
At the same time, these tests seem increasingly dubious to me. There are
a very large number of tests and it isn't clear that they are
systematically covering a specific set of functionality. Anyways,
I don't want to reduce testing during the transition, I just want to
consolidate it to where it is easier to manage.
llvm-svn: 218860
file.
Some of these really don't make sense to test -- we're testing for the
*lack* of combining two shuffles into one, presumably because the two
would generate better shuffles in the end. But if you look at the
generated code shown here, in many cases the generated code is, frankly,
terrible. Or we combine any two generated shuffles back into a single
instruction! I've left a FIXME to revisit these decisions.
llvm-svn: 218859
and use the new grouped FileCheck patterns to match them.
No interesting changes yet, but this test is now in proper form to have
the other shuffle combining tests merged into it.
llvm-svn: 218857
The test has to do with DAG combines, and so it doesn't need the new
vector shuffle lowering to be effective. Also, it has a nice in-IR
triple string which we should really be using rather than command line
flags (unless it varies form RUN-line to RUN-line). Finally, I much
prefer letting LLVM synthesize the correct datalayout string from the
triple rather than baking one in here that will just become stale.
llvm-svn: 218856
generic DAG combining of shuffles relevant to x86.
My plan is to fold a bunch of the other DAG combining test cases into
this one, while converting them to use the nice new FileCheck assertion
syntax.
llvm-svn: 218855
a bare-metal triple and have nice BB labels, etc.
No significant change here, just tidying up to have a consistent set of
OS-agnostic vector functionality here.
llvm-svn: 218854
matching and lowering 64-bit insertions.
The first problem was that we weren't looking through bitcasts to
discover that we *could* lower as insertions. Once fixed, we in turn
weren't looking through bitcasts to discover that we could fold a load
into the lowering. Once fixed, we weren't forming a SCALAR_TO_VECTOR
node around the inserted element and instead were passing a scalar to
a DAG node that expected a vector. It turns out there are some patterns
that will "lower" this into the correct asm, but the rest of the X86
backend is very unhappy with such antics.
This should fix a few more edge case regressions I've spotted going
through the regression test suite to enable the new vector shuffle
lowering.
llvm-svn: 218839
Negative FABS of either a scalar or vector should be handled the same way
on x86 with SSE/AVX: a single OR instruction of the FP operand with a
constant to light up the sign bit(s).
http://llvm.org/bugs/show_bug.cgi?id=20578
Differential Revision: http://reviews.llvm.org/D5201
llvm-svn: 218822
test file.
This old test had a bunch of functions that were never even checked. =/
The only thing it really did was to make sure that we did something
reasonable in 32-bit mode with SSE4.1. Adding another run line to the
main vector-sext.ll test seems a better way to do that.
llvm-svn: 218810
of architectures: SSE2, SSSE3, SSE4.1, AVX, and AVX2.
Unfortunately, this exposses the absolute horror of the code we generate
for many of these patterns. Anyone wanting to familiarize themselves
with the x86 backend and improve performance could do a lot of good
sitting down and making these test cases not look so terrible. While the
new vector shuffle code I'm working on well help some, it won't fix all
of the crimes here.
llvm-svn: 218807
As discussed here:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140609/220598.html
And again here:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-September/077168.html
The sqrt of a negative number when using the llvm intrinsic is undefined.
We should return undef rather than 0.0 to match the definition in the LLVM IR lang ref.
This change should not affect any code that isn't using "no-nans-fp-math";
ie, no-nans is a requirement for generating the llvm intrinsic in place of a sqrt function call.
Unfortunately, the behavior introduced by this patch will not match current gcc, xlc, icc, and
possibly other compilers. The current clang/llvm behavior of returning 0.0 doesn't either.
We knowingly approve of this difference with the other compilers in an attempt to flag code
that is invoking undefined behavior.
A front-end warning should also try to convince the user that the program will fail:
http://llvm.org/bugs/show_bug.cgi?id=21093
Differential Revision: http://reviews.llvm.org/D5527
llvm-svn: 218803
These tests are far and away the best sext and zext tests we have for
vectors. I'm going to merge the other similar tests into them and expand
the ISA coverage.
llvm-svn: 218800
script to make them nice and predictable. This will ease updating them
for the new vector shuffle lowering and seeing the delta if any.
llvm-svn: 218795
avx-sext.ll using my new script.
Also add an AVX2 mode to this test.
Part of cleaning up the test suite before enabling the new vector
shuffle lowering. This also highlights some of the abysmal failures of
the old shuffle lowering. Check out those 'pinsrw' and 'pextrw'
sequences!
llvm-svn: 218794
As with x86 and AArch64, certain situations can arise where we need to spill
CPSR in the middle of a calculation. These should be avoided where possible
(MRS/MSR is rather expensive), which ARM is actually better at than the other
two since it tries to Glue defs to uses, but as a last ditch effort, copying is
better than crashing.
rdar://problem/18011155
llvm-svn: 218789
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
Summary: Implement conversion of 64 to 32 bit floating point numbers (fptrunc) in mips fast-isel
Test Plan:
fptrunc.ll
checked also with 4 internal mips build bot flavors mip32r1/miprs32r2 and at -O0 and -O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: rfuhler
Differential Revision: http://reviews.llvm.org/D5553
llvm-svn: 218785
r206400 and r209442 added remarks that are disabled by default.
However, if a diagnostic handler is registered, the remarks are sent
unfiltered to the handler. This is the right behaviour for clang, since
it has its own filters.
However, the diagnostic handler exposed in the LTO API receives only the
severity and message. It doesn't have the information to filter by pass
name. For LTO, disabled remarks should be filtered by the producer.
I've changed `LLVMContext::setDiagnosticHandler()` to take a `bool`
argument indicating whether to respect the built-in filters. This
defaults to `false`, so other consumers don't have a behaviour change,
but `LTOCodeGenerator::setDiagnosticHandler()` sets it to `true`.
To make this behaviour testable, I added a `-use-diagnostic-handler`
command-line option to `llvm-lto`.
This fixes PR21108.
llvm-svn: 218784
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
Currently, we only codegen the VRINT[APMXZR] and VCVT[BT] instructions
when targeting ARMv8, but they are actually present on any target with
FP-ARMv8. Note that FP-ARMv8 is called FPv5 when is is part of an
M-profile core, but they have the same instructions so we model them
both as FPARMv8 in the ARM backend.
llvm-svn: 218763
that keep cropping up in the regression test suite.
This also addresses one of the issues raised on the mailing list with
failing to form 'movsd' in as many cases as we realistically should.
There will be corresponding patches forthcoming for v4f32 at least. This
was a lot of fuss for a relatively small gain, but all the fuss was on
my end trying different ways of holding the pieces of the x86 fragment
patterns *just right*. Now that it works, the code is reasonably simple.
In the new test cases I'm adding here, v2i64 sticks out as just plain
horrible. I've not come up with any great ideas here other than that it
would be nice to recognize when we're *going* to take a domain crossing
hit and cross earlier to get the decent instructions. At least with AVX
it is slightly less silly....
llvm-svn: 218756
The A64 instruction set includes a generic register syntax for accessing
implementation-defined system registers. The syntax for these registers is:
S<op0>_<op1>_<CRn>_<CRm>_<op2>
The encoding space permitted for implementation-defined system registers
is:
op0 op1 CRn CRm op2
11 xxx 1x11 xxxx xxx
The full encoding space can now be accessed:
op0 op1 CRn CRm op2
xx xxx xxxx xxxx xxx
This is useful to anyone needing to write assembly code supporting new
system registers before the assembler has learned the official names for
them.
llvm-svn: 218753
Summary: The natual vector cast node (similar to bitcast) AArch64ISD::NVCAST
was introduced in r217159 and r217138. This patch adds a missing cast from
v2f32 to v1i64 which is causing some compilation failures. Also added test
cases to cover various modimm types and BUILD_VECTORs with i64 elements.
llvm-svn: 218751
The Cortex-M7 has 3 options for its FPU: none, FPv5-SP-D16 and
FPv5-DP-D16. FPv5 has the same instructions as FP-ARMv8, so it can be
modelled using the same target feature, and all double-precision
operations are already disabled by the fp-only-sp target features.
llvm-svn: 218747
doesn't generate lazy binding stub for a function whose address is taken in
the program.
Differential Revision: http://reviews.llvm.org/D5067
llvm-svn: 218744
in exposing the scalar value to the broadcast DAG fragment so that we
can catch even reloads and fold them into the broadcast.
This is somewhat magical I'm afraid but seems to work. It is also what
the old lowering did, and I've switched an old test to run both
lowerings demonstrating that we get the same result.
Unlike the old code, I'm not lowering f32 or f64 scalars through this
path when we only have AVX1. The target patterns include pretty heinous
code to re-cast those as shuffles when the scalar happens to not be
spilled because AVX1 provides no broadcast mechanism from registers
what-so-ever. This is terribly brittle. I'd much rather go through our
generic lowering code to get this. If needed, we can add a peephole to
get even more opportunities to broadcast-from-spill-slots that are
exposed post-RA, but my suspicion is this just doesn't matter that much.
llvm-svn: 218734
the same speed as pshufd but we can fold loads into the pmovzx
instructions.
This fixes some regressions that came up in the regression test suite
for the new vector shuffle lowering.
llvm-svn: 218733
This allows proper disambiguation of unbounded arrays and arrays of zero
bound ("struct foo { int x[]; };" and "struct foo { int x[0]; }"). GCC
instead produces an upper bound of -1 in the latter situation, but count
seems tidier. This way lower_bound is provided if it's not the language
default and count is provided if the count is known, otherwise it's
omitted. Simple.
If someone wants to look at rdar://problem/12566646 and see if this
change is acceptable to that bug/fix, that might be helpful (see the
empty-and-one-elem-array.ll test case which cites that radar).
llvm-svn: 218726
VPBROADCAST.
This has the somewhat expected pervasive impact. I don't know why
I forgot about this. Everything seems good with lots of significant
improvements in the tests.
llvm-svn: 218724
In special cases select instructions can be eliminated by
replacing them with a cheaper bitwise operation even when the
select result is used outside its home block. The instances implemented
are patterns like
%x=icmp.eq
%y=select %x,%r, null
%z=icmp.eq|neq %y, null
br %z,true, false
==> %x=icmp.ne
%y=icmp.eq %r,null
%z=or %x,%y
br %z,true,false
The optimization is integrated into the instruction
combiner and performed only when all uses of the select result can
be replaced by the select operand proper. For this dominator information
is used and dominance is now a required analysis pass in the combiner.
The optimization itself is iterative. The critical step is to replace the
select result with the non-constant select operand. So the select becomes
local and the combiner iteratively works out simpler code pattern and
eventually eliminates the select.
rdar://17853760
llvm-svn: 218721
Two related things:
1. Fixes a bug when calculating the offset in GetLinearExpression. The code
previously used zext to extend the offset, so negative offsets were converted
to large positive ones.
2. Enhance aliasGEP to deduce that, if the difference between two GEP
allocations is positive and all the variables that govern the offset are also
positive (i.e. the offset is strictly after the higher base pointer), then
locations that fit in the gap between the two base pointers are NoAlias.
Patch by Nick White!
llvm-svn: 218714
Summary:
This patch adds a threshold that controls the number of bonus instructions
allowed for folding branches with common destination. The original code allows
at most one bonus instruction. With this patch, users can customize the
threshold to allow multiple bonus instructions. The default threshold is still
1, so that the code behaves the same as before when users do not specify this
threshold.
The motivation of this change is that tuning this threshold significantly (up
to 25%) improves the performance of some CUDA programs in our internal code
base. In general, branch instructions are very expensive for GPU programs.
Therefore, it is sometimes worth trading more arithmetic computation for a more
straightened control flow. Here's a reduced example:
__global__ void foo(int a, int b, int c, int d, int e, int n,
const int *input, int *output) {
int sum = 0;
for (int i = 0; i < n; ++i)
sum += (((i ^ a) > b) && (((i | c ) ^ d) > e)) ? 0 : input[i];
*output = sum;
}
The select statement in the loop body translates to two branch instructions "if
((i ^ a) > b)" and "if (((i | c) ^ d) > e)" which share a common destination.
With the default threshold, SimplifyCFG is unable to fold them, because
computing the condition of the second branch "(i | c) ^ d > e" requires two
bonus instructions. With the threshold increased, SimplifyCFG can fold the two
branches so that the loop body contains only one branch, making the code
conceptually look like:
sum += (((i ^ a) > b) & (((i | c ) ^ d) > e)) ? 0 : input[i];
Increasing the threshold significantly improves the performance of this
particular example. In the configuration where both conditions are guaranteed
to be true, increasing the threshold from 1 to 2 improves the performance by
18.24%. Even in the configuration where the first condition is false and the
second condition is true, which favors shortcuts, increasing the threshold from
1 to 2 still improves the performance by 4.35%.
We are still looking for a good threshold and maybe a better cost model than
just counting the number of bonus instructions. However, according to the above
numbers, we think it is at least worth adding a threshold to enable more
experiments and tuning. Let me know what you think. Thanks!
Test Plan: Added one test case to check the threshold is in effect
Reviewers: nadav, eliben, meheff, resistor, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D5529
llvm-svn: 218711
cases.
While clearly we don't need the AVX vector width, these ISA extensions
often cause us to select different instructions and we should cover them
even with the narrow vector width.
Also, while here, nuke the stress_test2 contents. There is no reason to
try to FileCheck this entire body when it is mostly a test for
successfully surviving the code generator.
llvm-svn: 218710
shuffle tests to match that used in the script I posted and now used
consistently in 128-bit tests.
Nothing interesting changing here, just using the label name as the
FileCheck label and a slightly more general comment marker consumption
strategy.
llvm-svn: 218709
updating script so that they are more thorough and consistent.
Specific fixes here include:
- Actually test VEX-encoded AVX mnemonics.
- Actually use an SSE 4.1 run to test SSE 4.1 features!
- Correctly check instructions sequences from the start of the function.
- Elide the shuffle operands and comment designator in a consistent way.
- Test all of the architectures instead of just the ones I was motivated
to manually author.
I've gone back through and fixed up any egregious issues I spotted. Let
me know if I missed something you really dislike.
One downside to this is that we're now not as diligently using FileCheck
variables for registers. I would be much more concerned with this if we
had larger register usage, but there just aren't that interesting of
register choices here and most of the registers are constrained by the
ABI. Ultimately, I don't think this is likely to be the maintenance
burden for these tests and updating them again should be staright
forward.
llvm-svn: 218707
r218129 omits DW_TAG_subprograms which have no inlined subroutines when
emitting -gmlt data. This makes -gmlt very low cost for -O0 builds.
Darwin's dsymutil reasonably considers a CU empty if it has no
subprograms (which occurs with the above optimization in -O0 programs
without any force_inline function calls) and drops the line table, CU,
and everything in this situation, making backtraces impossible.
Until dsymutil is modified to account for this, disable this
optimization on Darwin to preserve the desired functionality.
(see r218545, which should be reverted after this patch, for other
discussion/details)
Footnote:
In the long term, it doesn't look like this scheme (of simplified debug
info to describe inlining to enable backtracing) is tenable, it is far
too size inefficient for optimized code (the DW_TAG_inlined_subprograms,
even once compressed, are nearly twice as large as the line table
itself (also compressed)) and we'll be considering things like Cary's
two level line table proposal to encode all this information directly in
the line table.
llvm-svn: 218702
Note: This version fixed an issue with the TBZ/TBNZ instructions that were
generated in FastISel. The issue was that the 64bit version of TBZ (TBZX)
automagically sets the upper bit of the immediate field that is used to specify
the bit we want to test. To test for any of the lower 32bits we have to first
extract the subregister and use the 32bit version of the TBZ instruction (TBZW).
Original commit message:
Teach selectBranch to fold bit test and branch into a single instruction (TBZ or
TBNZ).
llvm-svn: 218693
No tests for omod since nothing uses it yet, but
this should get rid of the remaining annoying trailing
zeros after some instructions.
llvm-svn: 218692
This commit adds a test which checks that the functions defined in header files will get associated with the header files rather than the source files in the reports.
Differential Revision: http://reviews.llvm.org/D5489
llvm-svn: 218673
This commit fixes llvm-cov's function coverage metric by using the number of executed functions instead of the number of fully covered functions.
Differential Revision: http://reviews.llvm.org/D5196
llvm-svn: 218672
Fixed lowering of this intrinsics in case when mask is v2i1 and v4i1.
Now cmp intrinsics lower in the following way:
(i8 (int_x86_avx512_mask_pcmpeq_q_128
(v2i64 %a), (v2i64 %b), (i8 %mask))) ->
(i8 (bitcast
(v8i1 (insert_subvector undef,
(v2i1 (and (PCMPEQM %a, %b),
(extract_subvector
(v8i1 (bitcast %mask)), 0))), 0))))
llvm-svn: 218669
a flawed direction and causing miscompiles. Read on for details.
Fundamentally, the premise of this patch series was to map
VECTOR_SHUFFLE DAG nodes into VSELECT DAG nodes for all blends because
we are going to *have* to lower to VSELECT nodes for some blends to
trigger the instruction selection patterns of variable blend
instructions. This doesn't actually work out so well.
In order to match performance with the existing VECTOR_SHUFFLE
lowering code, we would need to re-slice the blend in order to fit it
into either the integer or floating point blends available on the ISA.
When coming from VECTOR_SHUFFLE (or other vNi1 style VSELECT sources)
this works well because the X86 backend ensures that these types of
operands to VSELECT get sign extended into '-1' and '0' for true and
false, allowing us to re-slice the bits in whatever granularity without
changing semantics.
However, if the VSELECT condition comes from some other source, for
example code lowering vector comparisons, it will likely only have the
required bit set -- the high bit. We can't blindly slice up this style
of VSELECT. Reid found some code using Halide that triggers this and I'm
hopeful to eventually get a test case, but I don't need it to understand
why this is A Bad Idea.
There is another aspect that makes this approach flawed. When in
VECTOR_SHUFFLE form, we have very distilled information that represents
the *constant* blend mask. Converting back to a VSELECT form actually
can lose this information, and so I think now that it is better to treat
this as VECTOR_SHUFFLE until the very last moment and only use VSELECT
nodes for instruction selection purposes.
My plan is to:
1) Clean up and formalize the target pre-legalization DAG combine that
converts a VSELECT with a constant condition operand into
a VECTOR_SHUFFLE.
2) Remove any fancy lowering from VSELECT during *legalization* relying
entirely on the DAG combine to catch cases where we can match to an
immediate-controlled blend instruction.
One additional step that I'm not planning on but would be interested in
others' opinions on: we could add an X86ISD::VSELECT or X86ISD::BLENDV
which encodes a fully legalized VSELECT node. Then it would be easy to
write isel patterns only in terms of this to ensure VECTOR_SHUFFLE
legalization only ever forms the fully legalized construct and we can't
cycle between it and VSELECT combining.
llvm-svn: 218658
The sign-/zero-extension of the loaded value can be performed by the memory
instruction for free. If the result of the load has only one use and the use is
a sign-/zero-extend, then we emit the proper load instruction. The extend is
only a register copy and will be optimized away later on.
Other instructions that consume the sign-/zero-extended value are also made
aware of this fact, so they don't fold the extend too.
This fixes rdar://problem/18495928.
llvm-svn: 218653
map, this makes sure that we can compile the same code for two different
ABIs (hard and soft float) in the same module.
Update one testcase accordingly (and fix some confusing naming) and
add a new testcase as well with the ordering swapped which would
highlight the problem.
llvm-svn: 218632
This patch improves the target-specific cost model to better handle signed
division by a power of two. The immediate result is that this enables the SLP
vectorizer to do a better job.
http://reviews.llvm.org/D5469
PR20714
llvm-svn: 218607
Runtime unrolling will create a prologue to execute the extra
iterations which is can't divided by the unroll factor. It
generates an if-then-else sequence to jump into a factor -1
times unrolled loop body, like
extraiters = tripcount % loopfactor
if (extraiters == 0) jump Loop:
if (extraiters == loopfactor) jump L1
if (extraiters == loopfactor-1) jump L2
...
L1: LoopBody;
L2: LoopBody;
...
if tripcount < loopfactor jump End
Loop:
...
End:
It means if the unroll factor is 4, the loop body will be 7
times unrolled, 3 are in loop prologue, and 4 are in the loop.
This commit is to use a loop to execute the extra iterations
in prologue, like
extraiters = tripcount % loopfactor
if (extraiters == 0) jump Loop:
else jump Prol
Prol: LoopBody;
extraiters -= 1 // Omitted if unroll factor is 2.
if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
if (tripcount < loopfactor) jump End
Loop:
...
End:
Then when unroll factor is 4, the loop body will be copied by
only 5 times, 1 in the prologue loop, 4 in the original loop.
And if the unroll factor is 2, new loop won't be created, just
as the original solution.
llvm-svn: 218604
nodes, and rely exclusively on its logic. This removes a ton of
duplication from the blend lowering and centralizes it in one place.
One downside is that it requires a bunch of hacks to make this work with
the current legalization framework. We have to manually speculate one
aspect of legalizing VSELECT nodes to get everything to work nicely
because the existing legalization framework isn't *actually* bottom-up.
The other grossness is that we somewhat duplicate the analysis of
constant blends. I'm on the fence here. If reviewers thing this would
look better with VSELECT when it has constant operands dumping over tho
VECTOR_SHUFFLE, we could go that way. But it would be a substantial
change because currently all of the actual blend instructions are
matched via patterns in the TD files based around VSELECT nodes (despite
them not being perfect fits for that). Suggestions welcome, but at least
this removes the rampant duplication in the backend.
llvm-svn: 218600
X86 target-specific DAG combining that tried to convert VSELECT nodes
into VECTOR_SHUFFLE nodes that it "knew" would lower into
immediate-controlled blend nodes.
Turns out, we have perfectly good lowering of all these VSELECT nodes,
and indeed that lowering already knows how to handle lowering through
BLENDI to immediate-controlled blend nodes. The code just wasn't getting
used much because this thing forced the world to go through the vector
shuffle lowering. Yuck.
This also exposes that I was too aggressive in avoiding domain crossing
in v218588 with that lowering -- when the other option is to expand into
two 128-bit vectors, it is worth domain crossing. Restore that behavior
now that we have nice tests covering it.
The test updates here fall into two camps. One is where previously we
ended up with an unsigned encoding of the blend operand and now we get
a signed encoding. In most of those places there were elaborate comments
explaining exactly what these operands really mean. Rather than that,
just switch these tests to use the nicely decoded comments that make it
obvious that the final shuffle matches.
The other updates are just removing pointless domain crossing by
blending integers with PBLENDW rather than BLENDPS.
llvm-svn: 218589
AVX-512.
There is no interesting logic yet. Everything ends up eventually
delegating to the generic code to split the vector and shuffle the
halves. Interestingly, that logic does a significantly better job of
lowering all of these types than the generic vector expansion code does.
Mostly, it lets most of the cases fall back to nice AVX2 code rather
than all the way back to SSE code paths.
Step 2 of basic AVX-512 support in the new vector shuffle lowering. Next
up will be to incrementally add direct support for the basic instruction
set to each type (adding tests first).
llvm-svn: 218585
vectors.
Someone will need to build the AVX512 lowering, which should follow
AVX1 and AVX2 *very* closely for AVX512F and AVX512BW resp. I've added
a dummy test which is a port of the v8f32 and v8i32 tests from AVX and
AVX2 to v8f64 and v8i64 tests for AVX512F and AVX512BW. Hopefully this
is enough information for someone to implement proper lowering here. If
not, I'll be happy to help, but right now the AVX-512 support isn't
a priority for me.
llvm-svn: 218583
lowerings.
This was hopelessly broken. First, the x86 backend wants '-1' to be the
element value representing true in a boolean vector, and second the
operand order for VSELECT is backwards from the actual x86 instructions.
To make matters worse, the backend is just using '-1' as the true value
to get the high bit to be set. It doesn't actually symbolically map the
'-1' to anything. But on x86 this isn't quite how it works: there *only*
the high bit is relevant. As a consequence weird non-'-1' values like
0x80 actually "work" once you flip the operands to be backwards.
Anyways, thanks to Hal for helping me sort out what these *should* be.
llvm-svn: 218582
new vector shuffle target DAG combines -- it helps to actually test for
the value you want rather than just using an integer in a boolean
context.
Have I mentioned that I loathe implicit conversions recently? :: sigh ::
llvm-svn: 218576
of widening masks.
We can't widen a zeroing mask unless both elements that would be merged
are either zeroed or undef. This is the only way to widen a mask if it
has a zeroed element.
Also clean up the code here by ordering the checks in a more logical way
and by using the symoblic values for undef and zero. I'm actually torn
on using the symbolic values because the existing code is littered with
the assumption that -1 is undef, and moreover that entries '< 0' are the
special entries. While that works with the values given to these
constants, using the symbolic constants actually makes it a bit more
opaque why this is the case.
llvm-svn: 218575
If there is a store followed by a store with the same value to the same location, then the store is dead/noop. It can be removed.
This problem is found in spec2006-197.parser.
For example,
stur w10, [x11, #-4]
stur w10, [x11, #-4]
Then one of the two stur instructions can be removed.
Patch by David Xu!
llvm-svn: 218569
and in the target shuffle combining when trying to widen vector
elements.
Previously only one of these was correct, and we didn't correctly
propagate zeroing target shuffle masks (which have a different sentinel
value from undef in non- target shuffle masks now). This isn't just
a missed optimization, this caused us to drop zeroing shuffles on the
floor and miscompile code. The added test case is one example of that.
There are other fixes to the test suite as a consequence of this as well
as restoring the undef elements in some of the masks that were lost when
I brought sanity to the actual *value* of the undef and zero sentinels.
I've also just cleaned up some of the PSHUFD and PSHUFLW and PSHUFHW
combining code, but that code really needs to go. It was a nice initial
attempt, but it isn't very principled and the recursive shuffle combiner
is much more powerful.
llvm-svn: 218562
to significantly more sane sentinels. Notably, everywhere else in the
backend's representation of shuffles uses '-1' to represent undef. The
target shuffle masks really shouldn't diverge from that, especially as
in a few places they are manipulated by shared code.
This causes us to lose some undef lanes in various test masks. I want to
get these back, but technically it isn't invalid and there are a *lot*
of bugs here so I want to try to establish a saner baseline for fixing
some of the bugs by aligning the specific senitnel values used.
llvm-svn: 218561
This is purely refactoring. No functional changes intended. PowerPC is the only target
that is currently using this interface.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
And:
z = y / x
into:
z = y * rcpe(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
There is one hook in TargetLowering to get the target-specific opcode for an estimate instruction
along with the number of refinement steps needed to make the estimate usable.
Differential Revision: http://reviews.llvm.org/D5484
llvm-svn: 218553
Users of getSectionContents shouldn't try to pass in BSS or virtual
sections. In all instances, this is a bug in the code calling this
routine.
N.B. Some COFF implementations (like CL) will mark their BSS sections as
taking space on disk. This would confuse COFFObjectFile into thinking
the section is larger than the file.
llvm-svn: 218549
So in fully linked images when a call is made through a stub it now gets a
comment like the following in the disassembly:
callq 0x100000f6c ## symbol stub for: _printf
indicating the call is to a symbol stub and which symbol it is for. This is
done for branch reference types and seeing if the branch target is in a stub
section and if so using the indirect symbol table entry for that stub and
using that symbol table entries symbol name.
llvm-svn: 218546
that managed to elude all of my fuzz testing historically. =/
Something changed to allow this code path to actually be exercised and
it was doing bad things. It is especially heavily exercised by the
patterns that emerge when doing AVX shuffles that end up lowered through
the 128-bit code path.
llvm-svn: 218540
This has weird operand requirements so it's worthwhile
to have very strict checks for its operands.
Add different combinations of SGPR operands.
llvm-svn: 218535
Instead of moving the first SGPR that is different than the first,
legalize the operand that requires the fewest moves if one
SGPR is used for multiple operands.
This saves extra moves and is also required for some instructions
which require that the same operand be used for multiple operands.
llvm-svn: 218532
Disable the SGPR usage restriction parts of the DAG legalizeOperands.
It now should only be doing immediate folding until it can be replaced
later. The real legalization work is now done by the other
SIInstrInfo::legalizeOperands
llvm-svn: 218531
e.g. v_cndmask_b32 requires the condition operand be an SGPR.
If one of the source operands were an SGPR, that would be considered
the one SGPR use and the condition operand would be illegally moved.
llvm-svn: 218529
No test since the current SIISelLowering::legalizeOperands
effectively hides this, and the general uses seem to only fire
on SALU instructions which don't have modifiers between
the operands.
When trying to use legalizeOperands immediately after
instruction selection, it now sees a lot more patterns
it did not see before which break on this.
llvm-svn: 218527
The annotation instructions are dropped during codegen and have no
impact on size. In some cases, the annotations were preventing the
unroller from unrolling a loop because the annotation calls were
pushing the cost over the unrolling threshold.
Differential Revision: http://reviews.llvm.org/D5335
llvm-svn: 218525
layer of tie-breaking sorting, it really helps to check that you're in
a tie first. =] Otherwise the whole thing cycles infinitely. Test case
added, another one found through fuzz testing.
llvm-svn: 218523
AVX support.
New test cases included. Note that none of the existing test cases
covered these buggy code paths. =/ Also, it is clear from this that
SHUFPS and SHUFPD are the most bug prone shuffle instructions in x86. =[
These were all detected by fuzz-testing. (I <3 fuzz testing.)
llvm-svn: 218522
This patch makes the ARM backend transform 3 operand instructions such as
'adds/subs' to the 2 operand version of the same instruction if the first
two register operands are the same.
Example: 'adds r0, r0, #1' will is transformed to 'adds r0, #1'.
Currently for some instructions such as 'adds' if you try to assemble
'adds r0, r0, #8' for thumb v6m the assembler would throw an error message
because the immediate cannot be encoded using 3 bits.
The backend should be smart enough to transform the instruction to
'adds r0, #8', which allows for larger immediate constants.
Patch by Ranjeet Singh.
llvm-svn: 218521
based on the Function. This is currently used to implement
mips16 support in the mips backend via the existing module
pass resetting the subtarget.
Things to note:
a) This involved running resetTargetOptions before creating a
new subtarget so that code generation options like soft-float
could be recognized when creating the new subtarget. This is
to deal with initialization code in isel lowering that only
paid attention to the initial value.
b) Many of the existing testcases weren't using the soft-float
feature correctly. I've corrected these based on the check
values assuming that was the desired behavior.
c) The mips port now pays attention to the target-cpu and
target-features strings when generating code for a particular
function. I've removed these from one function where the
requested cpu and features didn't match the check lines in
the testcase.
llvm-svn: 218492
Machine Sink uses loop depth information to select between successors BBs to
sink machine instructions into, where BBs within smaller loop depths are
preferable. This patch adds support for choosing between successors by using
profile information from BlockFrequencyInfo instead, whenever the information
is available.
Tested it under SPEC2006 train (average of 30 runs for each program); ~1.5%
execution speedup in average on x86-64 darwin.
<rdar://problem/18021659>
llvm-svn: 218472
Summary:
I originally tried doing this specifically for X86 in the backend in D5091,
but it was rather brittle and generally running too late to be general.
Furthermore, other targets may want to implement similar optimizations.
So I reimplemented it at the IR-level, fitting it into AtomicExpandPass
as it interacts with that pass (which could not be cleanly done before
at the backend level).
This optimization relies on a new target hook, which is only used by X86
for now, as the correctness of the optimization on other targets remains
an open question. If it is found correct on other targets, it should be
trivial to enable for them.
Details of the optimization are discussed in D5091.
Test Plan: make check-all + a new test
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5422
llvm-svn: 218455
These instructions do not indicate they are extendable or the
number of bits in the extendable operand. Rename to match
architected names. Add a testcase for the intrinsics.
llvm-svn: 218453
Summary:
The N32/N64 ABI's require that structs passed in registers are laid out
such that spilling the register with 'sd' places the struct at the lowest
address. For little endian this is trivial but for big-endian it requires
that structs are shifted into the upper bits of the register.
We also require that structs passed in registers have the 'inreg'
attribute for big-endian N32/N64 to work correctly. This is because the
tablegen-erated calling convention implementation only has access to the
lowered form of struct arguments (one or more integers of up to 64-bits
each) and is unable to determine the original type.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5286
llvm-svn: 218451
On ARM NEON, VAND with immediate (16/32 bits) is an alias to VBIC ~imm with
the same type size. Adding that logic to the parser, and generating VBIC
instructions from VAND asm files.
This patch also fixes the validation routines for NEON splat immediates which
were wrong.
Fixes PR20702.
llvm-svn: 218450
v4f64 and v8f32 shuffles when they are lane-crossing. We have fully
general lane-crossing permutation functions in AVX2 that make this easy.
Part of this also changes exactly when and how these vectors are split
up when we don't have AVX2. This isn't always a win but it usually is
a win, so on the balance I think its better. The primary regressions are
all things that just need to be fixed anyways such as modeling when
a blend can be completely accomplished via VINSERTF128, etc.
Also, this highlights one of the few remaining big features: we do
a really poor job of inserting elements into AVX registers efficiently.
This completes almost all of the big tricks I have in mind for AVX2. The
only things left that I plan to add:
1) element insertion smarts
2) palignr and other fairly specialized lowerings when they happen to
apply
llvm-svn: 218449
256-bit vectors with lane-crossing.
Rather than immediately decomposing to 128-bit vectors, try flipping the
256-bit vector lanes, shuffling them and blending them together. This
reduces our worst case shuffle by a pretty significant margin across the
board.
llvm-svn: 218446
The Thumb2 BXJ instruction (Branch and Exchange Jazelle) is not
defined for v7M or v8A. It is defined for all other Thumb2-supporting
architectures (v6T2, v7A and v7R).
llvm-svn: 218445
lowering where it only used the mask of the low 128-bit lane rather than
the entire mask.
This allows the new lowering to correctly match the unpack patterns for
v8i32 vectors.
For reference, the reason that we check for the the entire mask rather
than checking the repeated mask is because the repeated masks don't
abide by all of the invariants of normal masks. As a consequence, it is
safer to use the full mask with functions like the generic equivalence
test.
llvm-svn: 218442
lowering.
This completes the basic AVX2 feature support, but there are still some
improvements I'd like to do to really get the last mile of performance
here.
llvm-svn: 218440
I made a mistake in the previous commit and produced the wrong pattern.
Fix that. Also make one more shuffle pattern byte-based rather than
word-based, and add two more blend patterns.
llvm-svn: 218439
shuffles rather than word shuffles.
As you might guess, these were built starting from the word shuffle test
cases and I failed to properly port a bunch of them and left them as
widened word shuffle test cases. We still have a couple of tests that
check our ability to widen shuffles, but now we will test the actual
byte shuffle quite a bit better.
llvm-svn: 218438
Nico Rieck added support for this 32-bit COFF relocation some time ago
for Win64 stuff. It appears that as an oversight, the assembly output
used "foo"@IMGREL32 instead of "foo"@IMGREL, which is what we can parse.
Sadly, there were actually tests that took in IMGREL and put out
IMGREL32, and we didn't notice the inconsistency. Oh well. Now LLVM can
assemble it's own output with slightly more fidelity.
llvm-svn: 218437
missing test cases for it.
Unsurprisingly, without test cases, there were bugs here. Surprisingly,
this bug wasn't caught at compile time. Yep, there is an X86ISD::BLENDV.
It isn't wired to anything. Oops. I'll fix than next.
llvm-svn: 218434
If we have multiple coverage counts for the same segment, we need to
add them up rather than arbitrarily choosing one. This fixes that and
adds a test with template instantiations to exercise it.
llvm-svn: 218432
lowering.
This also implements the fancy blend lowering for v16i16 using AVX2 and
teaches the X86 backend to print shuffle masks for 256-bit PSHUFB
and PBLENDW instructions. It also makes the mask decoding correct for
PBLENDW instructions. The yaks, they are legion.
Tests are updated accordingly. There are some missing tests for the
VBLENDVB lowering, but I'll add those in a follow-up as this commit has
accumulated enough cruft already.
llvm-svn: 218430