This also simplifies the IR we create slightly: instead of working out
where success & failure should go manually, it turns out we can just
always jump to a success/failure block created for the purpose. Later
phases will sort out the mess without much difficulty.
llvm-svn: 210917
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
llvm-svn: 210903
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.
When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.
This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.
I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.
rdar://problem/16227836
llvm-svn: 209883
The previous situation where ATOMIC_LOAD_WHATEVER nodes were expanded
at MachineInstr emission time had grown to be extremely large and
involved, to account for the subtly different code needed for the
various flavours (8/16/32/64 bit, cmpxchg/add/minmax).
Moving this transformation into the IR clears up the code
substantially, and makes future optimisations much easier:
1. an atomicrmw followed by using the *new* value can be more
efficient. As an IR pass, simple CSE could handle this
efficiently.
2. Making use of cmpxchg success/failure orderings only has to be done
in one (simpler) place.
3. The common "cmpxchg; did we store?" idiom can be exposed to
optimisation.
I intend to gradually improve this situation within the ARM backend
and make sure there are no hidden issues before moving the code out
into CodeGen to be shared with (at least ARM64/AArch64, though I think
PPC & Mips could benefit too).
llvm-svn: 205525
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
llvm-svn: 203559
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
llvm-svn: 186258
Swift cores implement store barriers that are stronger than the ARM
specification but weaker than general barriers. They are, in fact, just about
enough to provide the ordering needed for atomic operations with release
semantics.
This patch makes use of that quirk.
llvm-svn: 185527
Turns out I'd misread the architecture reference manual and thought
that was a load/store-store barrier, when it's not.
Thanks for pointing it out Eli!
llvm-svn: 185356
I believe the full "dmb ish" barrier is not required to guarantee release
semantics for atomic operations. The weaker "dmb ishst" prevents previous
operations being reordered with a store executed afterwards, which is enough.
A key point to note (fortunately already correct) is that this barrier alone is
*insufficient* for sequential consistency, no matter how liberally placed.
llvm-svn: 185339
The ARM and Thumb variants of LDREXD and STREXD have different constraints and
take different operands. Previously the code expanding atomic operations didn't
take this into account and asserted in Thumb mode.
llvm-svn: 173780
This patch replaces the hard coded GPR pair [R0, R1] of
Intrinsic:arm_ldrexd and [R2, R3] of Intrinsic:arm_strexd with
even/odd GPRPair reg class.
Similar to the lowering of atomic_64 operation.
llvm-svn: 168207