Implemented conversion for `spv.BitReverse` and `spv.BitCount`. Since ODS
generates builders in a different way for LLVM dialect intrinsics, I
added attributes to build method in `DirectConversionPattern` class. The
tests for these ops are in `bitwise-ops-to-llvm.mlir`.
Differential Revision: https://reviews.llvm.org/D82286
Add a pass to rewrite sequential chains of `spirv::CompositeInsert`
operations into `spirv::CompositeConstruct` operations.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D82198
This patch add support for 'spv.CopyMemory'. The following changes are
introduced:
- 'CopyMemory' op is added to SPIRVOps.td.
- Custom parse and print methods are introduced.
- A few Roundtripping tests are added.
Differential Revision: https://reviews.llvm.org/D82384
Summary: The patch fixes an off by one error in the method collapseParallelLoops. It ensures the same normalized bound is used for the computation of the division and the remainder.
Reviewers: herhut
Reviewed By: herhut
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82634
Conversions of allocation-related operations in Standard-to-LLVM need
declarations of "malloc" and "free" (or equivalents). They use locally created
OpBuilders pointed at the module level to declare these functions if necessary.
This is poorly compatible with the pattern infrastructure that is unaware of
new operations being created. Update the insertion point of the main rewriter
instead.
Differential Revision: https://reviews.llvm.org/D82649
Initially, unranked memref descriptors in the LLVM dialect were designed only
to be passed into functions. An assertion was guarding against returning
unranked memrefs from functions in the standard-to-LLVM conversion. This is
insufficient for functions that wish to return an unranked memref such that the
caller does not know the rank in advance, and hence cannot allocate the
descriptor and pass it in as an argument.
Introduce a calling convention for returning unranked memref descriptors as
follows. An unranked memref descriptor always points to a ranked memref
descriptor stored on stack of the current function. When an unranked memref
descriptor is returned from a function, the ranked memref descriptor it points
to is copied to dynamically allocated memory, the ownership of which is
transferred to the caller. The caller is responsible for deallocating the
dynamically allocated memory and for copying the pointed-to ranked memref
descriptor onto its stack.
Provide default lowerings for std.return, std.call and std.indirect_call that
maintain the conversion defined above.
This convention is additionally exercised by a runtime test to guard against
memory errors.
Differential Revision: https://reviews.llvm.org/D82647
Using fully qualified names wherever possible avoids ambiguous class and function names. This is a follow-up to D82371.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D82471
When there is a mix of affine load/store and non-affine operations (e.g. std.load, std.store),
affine-loop-fusion ignores the present of non-affine ops, thus changing the program semantics.
E.g. we have a program of three affine loops operating on the same memref in which one of them uses std.load and std.store, as follows.
```
affine.for
affine.store %1
affine.for
std.load %1
std.store %1
affine.for
affine.load %1
affine.store %1
```
affine-loop-fusion will produce the following result which changed the program semantics:
```
affine.for
std.load %1
std.store %1
affine.for
affine.store %1
affine.load %1
affine.store %1
```
This patch is to fix the above problem by checking non-affine users of the memref that are between the source and destination nodes of interest.
Differential Revision: https://reviews.llvm.org/D82158
Lower `shape.rank` to standard dialect.
A shape's size is the same as the extent of the first and only dimension of the
`tensor<?xindex>` it is represented by.
Differential Revision: https://reviews.llvm.org/D82080
Replace any `rank(shape_of(tensor))` that relies on a ranked tensor with the
corresponding constant `const_size`.
Differential Revision: https://reviews.llvm.org/D82077
Summary: The patch optimizes the tiling of parallel loops with static bounds if the number of loop iterations is an integer multiple of the tile size.
Reviewers: herhut, ftynse, bondhugula
Reviewed By: herhut, ftynse
Subscribers: bondhugula, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82003
This patch introduces conversion patterns for `spv.module` and `spv._module_end`.
SPIR-V module is converted into `ModuleOp`. This will play a role of enclosing
scope to LLVM ops. At the moment, SPIR-V module attributes (such as memory model,
etc) are ignored.
Differential Revision: https://reviews.llvm.org/D82468
This revision adds a new support header, InterfaceSupport, to contain various generic bits of functionality for implementing "Interfaces". Interfaces embody a mechanism for attaching concept-based polymorphism to a type system. With this refactoring a new InterfaceMap type is added to allow for efficient interface lookups without going through an indirect call. This should provide a decent performance speedup without changing the size of AbstractOperation.
In a future revision, this functionality will also be used to bring Interface like functionality to Attributes and Types.
Differential Revision: https://reviews.llvm.org/D81882
Note that this does not mean that check-mlir will run check-mlir-integration
tests for all configurations. You still need to do a set up with the flag
MLIR_INCLUDE_INTEGRATION_TESTS set to ON in order to activate the integration test.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D82413
Use vector compares for the 1-D case. This approach scales much better
than generating insertion operations, and exposes SIMD directly to backend.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D82402
Summary: The Pass class exists in both the mlir and the llvm namespaces. Use the fully qualified class name to avoid any ambiguities.
Reviewers: rriddle
Reviewed By: rriddle
Subscribers: mehdi_amini, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82371
Introduced `llvm.intr.bitreverse` and `llvm.intr.ctpop` LLVM bit
intrinsics to LLVM dialect. These intrinsics help with SPIR-V to
LLVM conversion, allowing a direct mapping from `spv.BitReverse`
and `spv.BitCount` respectively. Tests are added to `roundtrip.mlir`
and `llvm-intrinsics.mlir`.
Differential Revision: https://reviews.llvm.org/D82285
This patch adds a new cli argument to the automation script to generate
a report of the current SPIRV spec instruction coverage. It dumps to the
standard output a YAML string with the coverage information.
Differential Revision: https://reviews.llvm.org/D82006
This patch provides an implementation for `spv.func` conversion. The pattern
is populated in a separate method added to the pass. At the moment, the type
signature conversion only includes the supported types. The conversion pattern
also matches SPIR-V function control attributes to LLVM function attributes.
Those are modelled as `passthrough` attributes in LLVM dialect. The following
mapping are used:
- None: no attributes passed
- Inline: `alwaysinline` seems to be the right equivalent (`inlinehint` is
semantically weaker in my opinion)
- DontInline: `noinline`
- Pure and Const: I think those can be modelled as `readonly` and `readnone`
attributes respectively.
Also, 2 patterns added for return ops conversion (`spv.Return` for void return
and `spv.ReturnValue` for a single value return).
Differential Revision: https://reviews.llvm.org/D81931
Add option to filter which op the OpDefinitionsGen run on. This enables having multiple ops together in the same TD file but generating different CC files for them (useful if one wants to use multiclasses or split out 1 dialect into multiple different libraries). There is probably more general query here (e.g., split out all ops that don't have a verify method, or that are commutative) but filtering based on op name (e.g., test.a_op) seemed a reasonable start and didn't require inventing a query specification mechanism here.
Differential Revision: https://reviews.llvm.org/D82319
Summary:
Currently, the TableGen rewrite generates redundant native calls in MLIR DRR files. This is a problem as some native calls may involve significant computations (e.g. when performing constant propagation where every values in a large tensor is touched).
The pattern was as follow:
```c++
if (native-call(args)) tblgen_attrs.emplace_back(rewriter, attribute, native-call(args))
```
The replacement pattern compute `native-call(args)` once and then use it both in the `if` condition and the `emplace_back` call.
Differential Revision: https://reviews.llvm.org/D82101
This patch extends the AccessChainOp index type handling to be able to deal with
all Integer type indices (i.e., all bit-widths and signedness symantics).
There were two ways of achieving this:
1- Backward compatible: The new way of handling the indices will assume that
an index type is i32 by default if not specified in the assembly format,
this way all the old tests would pass correctly.
2- Enforce the format: This unifies the spv.AccessChain Op format and all the old
tests had to be updated to reflect this change or else they fail.
I picked option-2 to unify the Op format and avoid having optional index-type fields
that can lead to somewhat confusing tests format and multiple representations for
the same Op with undocumented assumption that an index is i32 unless stated.
Nonetheless, reverting to option-1 should be straightforward if preferred or needed.
Differential Revision: https://reviews.llvm.org/D81763
Example of Matmul implementation in linalg.generic operation contained few mistakes that can puzzle new startes when trying to run the example.
Differential Revision: https://reviews.llvm.org/D82289
The patch makes the index type lowering of the GPU to NVVM/ROCDL
conversion configurable. It introduces a pass option that controls the
bitwidth used when lowering index computations.
Differential Revision: https://reviews.llvm.org/D80285
Summary:
We already had a parallel loop specialization pass that is used to
enable unrolling and consecutive vectorization by rewriting loops
whose bound is defined as a min of a constant and a dynamic value
into a loop with static bound (the constant) and the minimum as
bound, wrapped into a conditional to dispatch between the two.
This adds the same rewriting for for loops.
Differential Revision: https://reviews.llvm.org/D82189
Avoid using max on unsigned constants, in case the caller is using 0 we
end up with:
warning: taking the max of unsigned zero and a value is always equal to the other value [-Wmax-unsigned-zero]
Instead we can just use native TableGen to fold the comparison here.
Subview operations are not natively supported downstream in the spirv path.
This change allows removing subview when used by vector transfer the same way
we already do it when they are used by LoadOp/StoreOp
Differential Revision: https://reviews.llvm.org/D82106
Allow lhs and rhs to have different type than accumulator/destination. Some
hardware like GPUs support natively operations like uint8xuint8xuint32.
Differential Revision: https://reviews.llvm.org/D82069