captured. This allows the tracker to look at the specific use, which may be
especially interesting for function calls.
Use this to fix 'nocapture' deduction in FunctionAttrs. The existing one does
not iterate until a fixpoint and does not guarantee that it produces the same
result regardless of iteration order. The new implementation builds up a graph
of how arguments are passed from function to function, and uses a bottom-up walk
on the argument-SCCs to assign nocapture. This gets us nocapture more often, and
does so rather efficiently and independent of iteration order.
llvm-svn: 147327
there is non of that type to remove. This fixes a crasher in the particular
case where the instruction has metadata but no metadata storage in the context
(this is only possible if the instruction has !dbg but no other metadata info).
llvm-svn: 147285
This has the obvious advantage of being commutable and is always a win on x86 because
const - x wastes a register there. On less weird architectures this may lead to
a regression because other arithmetic doesn't fuse with it anymore. I'll address that
problem in a followup.
llvm-svn: 147254
LZCNT instructions are available. Force promotion to i32 to get
a smaller encoding since the fix-ups necessary are just as complex for
either promoted type
We can't do standard promotion for CTLZ when lowering through BSR
because it results in poor code surrounding the 'xor' at the end of this
instruction. Essentially, if we promote the entire CTLZ node to i32, we
end up doing the xor on a 32-bit CTLZ implementation, and then
subtracting appropriately to get back to an i8 value. Instead, our
custom logic just uses the knowledge of the incoming size to compute
a perfect xor. I'd love to know of a way to fix this, but so far I'm
drawing a blank. I suspect the legalizer could be more clever and/or it
could collude with the DAG combiner, but how... ;]
llvm-svn: 147251
my C-brain happy. Remove the unnecessary bits of pedantic IR fluff like
nounwind. Remove stray uses comments. Name things semantically rather
than tN so that adding a new test in the middle doesn't cause pain, and
so that new tests can be grouped semantically.
This exposes how little systematic testing is going on here. I noticed
this by finding several bugs via inspection and wondering why this test
wasn't catching any of them. =[
llvm-svn: 147248
'bsf' instructions here.
This one is actually debatable to my eyes. It's not clear that any chip
implementing 'tzcnt' would have a slow 'bsf' for any reason, and unless
EFLAGS or a zero input matters, 'tzcnt' is just a longer encoding.
Still, this restores the old behavior with 'tzcnt' enabled for now.
llvm-svn: 147246
X86ISelLowering C++ code. Because this is lowered via an xor wrapped
around a bsr, we want the dagcombine which runs after isel lowering to
have a chance to clean things up. In particular, it is very common to
see code which looks like:
(sizeof(x)*8 - 1) ^ __builtin_clz(x)
Which is trying to compute the most significant bit of 'x'. That's
actually the value computed directly by the 'bsr' instruction, but if we
match it too late, we'll get completely redundant xor instructions.
The more naive code for the above (subtracting rather than using an xor)
still isn't handled correctly due to the dagcombine getting confused.
Also, while here fix an issue spotted by inspection: we should have been
expanding the zero-undef variants to the normal variants when there is
an 'lzcnt' instruction. Do so, and test for this. We don't want to
generate unnecessary 'bsr' instructions.
These two changes fix some regressions in encoding and decoding
benchmarks. However, there is still a *lot* to be improve on in this
type of code.
llvm-svn: 147244
ARM targets with NEON units have access to aligned vector loads and
stores that are potentially faster than unaligned operations.
Add support for spilling the callee-saved NEON registers to an aligned
stack area using 16-byte aligned NEON loads and store.
This feature is off by default, controlled by an -align-neon-spills
command line option.
llvm-svn: 147211
My change r146949 added register clobbers to the eh_sjlj_dispatchsetup pseudo
instruction, but on Thumb1 some of those registers cannot be used. This
caused massive failures on the testsuite when compiling for Thumb1. While
fixing that, I noticed that the eh_sjlj_setjmp instruction has a "nofp"
variant, and I realized that dispatchsetup needs the same thing, so I have
added that as well.
llvm-svn: 147204
tblgen has been renamed to llvm-tblgen so this command has been failing,
and it's no longer needed because llvm-tblgen is already installed by default.
llvm-svn: 147187
This was disabled years ago because of a bug in GCC 4.1, which is
on our "broken compilers" list for other reasons. Saving ~500k
on a clang binary (Release+Asserts) is well worth dropping support
for it.
We currently disable it for shared libraries (where it would bring
the biggest win) because clang is broken (PR11642).
IMPORTANT: If you're doing incremental builds you may get tons of
linker warnings. make clean will fix them.
llvm-svn: 147182
time regressions. In general, it is beneficial to compile-time.
Original commit message:
Fix for bug #11429: Wrong behaviour for switches. Small improvement for code
size heuristics.
llvm-svn: 147175
The value from the operands isn't right yet, but we weren't encoding it at
all previously. The parser needs to twiddle the values when building the
instruction.
Partial for: rdar://10558523
llvm-svn: 147170
probability wouldn't be considered "hot" in some weird loop structures
or other compounding probability patterns. This makes it much harder to
confuse, but isn't really a principled fix. I'd actually like it if we
could model a zero probability, as it would make this much easier to
reason about. Suggestions for how to do this better are welcome.
llvm-svn: 147142
performance regressions (both execution-time and compile-time) on our
nightly testers.
Original commit message:
Fix for bug #11429: Wrong behaviour for switches. Small improvement for code
size heuristics.
llvm-svn: 147131