modules. This leaves us without an explicit syntax for importing
modules in C/C++, because such a syntax needs to be discussed
first. In Objective-C/Objective-C++, the @import syntax is used to
import modules.
Note that, under -fmodules, C/C++ programs can import modules via the
#include mechanism when a module map is in place for that header. This
allows us to work with modules in C/C++ without committing to a syntax.
llvm-svn: 147467
If anybody has strong feelings about 'default: assert(0 && "blah")' vs
'default: llvm_unreachable("blah")', feel free to regularize the instances of
each in this file.
llvm-svn: 147459
member function template, since the behavior is identical for
ObjCInterfaceDecl and ObjCProtocolDecl. It's expected that all
redeclarable entities will have the same behavior.
llvm-svn: 147450
module imports from -fauto-module-import to -fmodules. The new name
will eventually be used to enable modules, and the #include/#import
mapping is a crucial part of the feature.
llvm-svn: 147447
The failure seen on win32, when i64 type is illegal.
It happens on stage of conversion VECTOR_SHUFFLE to BUILD_VECTOR.
The failure message is:
llc: SelectionDAG.cpp:784: void VerifyNodeCommon(llvm::SDNode*): Assertion `(I->getValueType() == EltVT || (EltVT.isInteger() && I->getValueType().isInteger() && EltVT.bitsLE(I->getValueType()))) && "Wrong operand type!"' failed.
I added a special test that checks vector shuffle on win32.
llvm-svn: 147445
Clang driver. This involves a bunch of silly option parsing code to try
to carefully emulate GCC's options. Currently, this takes a conservative
approach, and unless all of the unsafe optimizations are enabled, none
of them are. The fine grained control doesn't seem particularly useful.
If it ever becomes useful, we can add that to LLVM first, and then
expose it here.
This also fixes a few tiny bugs in the flag management around
-fhonor-infinities and -fhonor-nans; the flags now form proper sets both
for enabling and disabling, with the last flag winning.
I've also implemented a moderately terrifying GCC feature where
a language change is also provided by the '-ffast-math' flag by defining
the __FAST_MATH__ preprocessor macro. This feature is tracked and
serialized in the frontend but it isn't used yet. A subsequent patch
will add the preprocessor macro and tests for it.
I've manually tested that codegen appears to respect this, but I've not
dug in enough to see if there is an easy way to test codegen options w/o
relying on the particulars of LLVM's optimizations.
llvm-svn: 147434
is testing the bitcode reader's functionality, not VMCore's. Add the
what is a hope sufficient build system mojo to build and run a new
unittest.
Also clean up some of the test's naming. The goal for the file should be
to unittest the Bitcode Reader, and this is just one particular test
among potentially many in the future. Also, reverse my position and
relegate the PR# to a comment, but stash the comment on the same line as
the test name so it doesn't get lost. This makes the code more
self-documenting hopefully w/o losing track of the PR number.
llvm-svn: 147431
build. This didn't show up in the CMake build because the CMake build
for the unittests is rather poorly factored.
This probably isn't the correct fix. This should be a bitcode reader
unittest not a VMCore unittest. I'll move it and clean various parts of
the unittest up in a follow-up patch, but I wanted to unbreak the bots.
llvm-svn: 147427