Kernel function names have to be preserved as in the original
source to be able to access them from the host API side.
This commit also adds restriction to kernels that prevents them
from being used in overloading, templates, etc.
Differential Revision: https://reviews.llvm.org/D60454
llvm-svn: 360152
Similarly to static variables in OpenCL, static class data
members should be deduced to __global addr space.
Differential Revision: https://reviews.llvm.org/D61304
llvm-svn: 359789
Fixed bug in C++ to prevent parsing 'private' as a
valid address space qualifier.
Differential Revision: https://reviews.llvm.org/D59874
llvm-svn: 357162
When we attempt to add an addr space qual to a type already
qualified by an addr space ICE is triggered. Before creating
a type with new address space, remove the old addr space.
Fixing PR38614!
Differential Revision: https://reviews.llvm.org/D57524
llvm-svn: 353160
When creating the prototype of implicit assignment operators the
returned reference to the class should be qualified with the same
addr space as 'this' (i.e. __generic in OpenCL).
Differential Revision: https://reviews.llvm.org/D57101
llvm-svn: 352617
Methods can now be qualified with address spaces to prevent
undesirable conversions to generic or to provide custom
implementation to be used if the object is located in certain
memory segments.
This commit extends parsing and standard C++ overloading to
work for an address space of a method (i.e. implicit 'this'
parameter).
Differential Revision: https://reviews.llvm.org/D55850
llvm-svn: 351747
Set address spaces of 'this' param correctly for implicit special
class members.
This also changes initialization conversion sequence to separate
address space conversion from other qualifiers in case of binding
reference to a temporary. In this case address space conversion
should happen after the binding (unlike for other quals). This is
needed to materialize it correctly in the alloca address space.
Initial patch by Mikael Nilssoni!
Differential Revision: https://reviews.llvm.org/D56066
llvm-svn: 351053
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Note: This recommits the previously reverted patch,
but now it is commited together with a fix for lldb.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 349019
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 348927
Added new diagnostic when templates are instantiated with
different address space from the one provided in its definition.
This also prevents deducing generic address space in pointer
type of templates to allow giving them concrete address space
during instantiation.
Differential Revision: https://reviews.llvm.org/D55127
llvm-svn: 348382
Fix ICEs on template instantiations that were leading to
the creation of invalid code patterns with address spaces.
Incorrect cases are now diagnosed properly.
Differential Revision: https://reviews.llvm.org/D54858
llvm-svn: 347865
Reject uses of the default new/delete operators with a diagnostic
instead of a crash in OpenCL C++ mode and accept user-defined forms.
Differential Revision: https://reviews.llvm.org/D46651
llvm-svn: 334700
Restrict the following keywords in the OpenCL C++ language mode,
according to Sections 2.2 & 2.9 of the OpenCL C++ 1.0 Specification.
- dynamic_cast
- typeid
- register (already restricted in OpenCL C, update the diagnostic)
- thread_local
- exceptions (try/catch/throw)
- access qualifiers read_only, write_only, read_write
Support the `__global`, `__local`, `__constant`, `__private`, and
`__generic` keywords in OpenCL C++. Leave the unprefixed address
space qualifiers such as global available, i.e., do not mark them as
reserved keywords in OpenCL C++. libclcxx provides explicit address
space pointer classes such as `global_ptr` and `global<T>` that are
implemented using the `__`-prefixed qualifiers.
Differential Revision: https://reviews.llvm.org/D46022
llvm-svn: 331874