only occur for pointer types; they are also possible for integer types
now.
- No intended functionality change, IntExprEvaluate doesn't return
LValue results yet.
llvm-svn: 65066
IRgen no longer relies on isConstantInitializer, instead we just try
to emit the constant. If that fails then in C we emit an error
unsupported (this occurs when Sema accepted something that it doesn't
know how to fold, and IRgen doesn't know how to emit) and in C++ we
emit a guarded initializer.
This ends up handling a few more cases, because IRgen was actually
able to emit some of the constants Sema accepts but can't Evaluate().
For example, PR3398.
llvm-svn: 64780
about, whether they are builtins or not. Use this to add the
appropriate "format" attribute to NSLog, NSLogv, asprintf, and
vasprintf, and to translate builtin attributes (from Builtins.def)
into actual attributes on the function declaration.
Use the "printf" format attribute on function declarations to
determine whether we should do format string checking, rather than
looking at an ad hoc list of builtins and "known" function names.
Be a bit more careful about when we consider a function a "builtin" in
C++.
llvm-svn: 64561
represents an implicit value-initialization of a subobject of a
particular type. This replaces the (ab)use of CXXZeroValueInitExpr
within initializer lists for the "holes" that occur due to the use of
C99 designated initializers.
The new test case is currently XFAIL'd, because CodeGen's
ConstExprEmitter (in lib/CodeGen/CGExprConstant.cpp) needs to be
taught to value-initialize when it sees ImplicitValueInitExprs.
llvm-svn: 63317
initializers.
- We now initialize unions properly when a member other than the
first is named by a designated initializer.
- We now provide proper semantic analysis and code generation for
GNU array-range designators *except* that side effects will occur
more than once. We warn about this.
llvm-svn: 63253
The approach I've taken in this patch is relatively straightforward,
although the code itself is non-trivial. Essentially, as we process
an initializer list we build up a fully-explicit representation of the
initializer list, where each of the subobject initializations occurs
in order. Designators serve to "fill in" subobject initializations in
a non-linear way. The fully-explicit representation makes initializer
lists (both with and without designators) easy to grok for codegen and
later semantic analyses. We keep the syntactic form of the initializer
list linked into the AST for those clients interested in exactly what
the user wrote.
Known limitations:
- Designating a member of a union that isn't the first member may
result in bogus initialization (we warn about this)
- GNU array-range designators are not supported (we warn about this)
llvm-svn: 63242
information for declarations that were referenced via a qualified-id,
e.g., N::C::value. We keep track of the location of the start of the
nested-name-specifier. Note that the difference between
QualifiedDeclRefExpr and DeclRefExpr does have an effect on the
semantics of function calls in two ways:
1) The use of a qualified-id instead of an unqualified-id suppresses
argument-dependent lookup
2) If the name refers to a virtual function, the qualified-id
version will call the function determined statically while the
unqualified-id version will call the function determined dynamically
(by looking up the appropriate function in the vtable).
Neither of these features is implemented yet, but we do print out
qualified names for QualifiedDeclRefExprs as part of the AST printing.
llvm-svn: 61789
which can refer to static data members, enumerators, and member
functions as well as to non-static data members.
Implement correct lvalue computation for member references in C++.
Compute the result type of non-static data members of reference type properly.
llvm-svn: 61294
and separates lexical name lookup from qualified name lookup. In
particular:
* Make DeclContext the central data structure for storing and
looking up declarations within existing declarations, e.g., members
of structs/unions/classes, enumerators in C++0x enums, members of
C++ namespaces, and (later) members of Objective-C
interfaces/implementations. DeclContext uses a lazily-constructed
data structure optimized for fast lookup (array for small contexts,
hash table for larger contexts).
* Implement C++ qualified name lookup in terms of lookup into
DeclContext.
* Implement C++ unqualified name lookup in terms of
qualified+unqualified name lookup (since unqualified lookup is not
purely lexical in C++!)
* Limit the use of the chains of declarations stored in
IdentifierInfo to those names declared lexically.
* Eliminate CXXFieldDecl, collapsing its behavior into
FieldDecl. (FieldDecl is now a ScopedDecl).
* Make RecordDecl into a DeclContext and eliminates its
Members/NumMembers fields (since one can just iterate through the
DeclContext to get the fields).
llvm-svn: 60878
- Returns addr of constant for argument + '\0'.
- I couldn't think of a better name.
- Move appropriate users of GetAddrOfConstantString to this.
Rename getStringForStringLiteral to GetStringForStringLiteral.
Add GetAddrOfConstantStringFromLiteral
- This combines GetAddrOfConstantString and
GetStringForStringLiteral. This method can be, but is not yet, more
efficient.
Change GetAddrOfConstantString to not add terminating '\0'
- <rdar://problem/6140956>
llvm-svn: 54768