Summary:
CGProfilePass is run by default in certain new pass manager optimization pipeline. Assemblers other than llvm as (such as gnu as) cannot recognize the .cgprofile entries generated and emitted from this pass, causing build time error.
This patch adds new options in clang CodeGenOpts and PassBuilder options so that we can turn cgprofile off when not using integrated assembler.
Reviewers: Bigcheese, xur, george.burgess.iv, chandlerc, manojgupta
Reviewed By: manojgupta
Subscribers: manojgupta, void, hiraditya, dexonsmith, llvm-commits, tcwang, llozano
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D62627
Summary:
Run StackSafetyAnalysis at the end of the IR pipeline and annotate
proven safe allocas with !stack-safe metadata. Do not instrument such
allocas in the AArch64StackTagging pass.
Reviewers: pcc, vitalybuka, ostannard
Reviewed By: vitalybuka
Subscribers: merge_guards_bot, kristof.beyls, hiraditya, cfe-commits, gilang, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73513
Summary:
Depends on https://reviews.llvm.org/D71902.
The last in a series of six patches that ports the LLVM coroutines
passes to the new pass manager infrastructure.
This patch has Clang schedule the new coroutines passes when the
`-fexperimental-new-pass-manager` option is used. With this and the
previous 5 patches, Clang is capable of building and successfully
running the test suite of large coroutines projects such as
https://github.com/lewissbaker/cppcoro with
`ENABLE_EXPERIMENTAL_NEW_PASS_MANAGER=On`.
Reviewers: GorNishanov, lewissbaker, chandlerc, junparser
Subscribers: EricWF, cfe-commits, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71903
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
This restores 59733525d3 (D71913), along
with bot fix 19c76989bb.
The bot failure should be fixed by D73418, committed as
af954e441a.
I also added a fix for non-x86 bot failures by requiring x86 in new test
lld/test/ELF/lto/devirt_vcall_vis_public.ll.
Summary:
Third part in series to support Safe Whole Program Devirtualization
Enablement, see RFC here:
http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
This patch adds type test metadata under -fwhole-program-vtables,
even for classes without hidden visibility. It then changes WPD to skip
devirtualization for a virtual function call when any of the compatible
vtables has public vcall visibility.
Additionally, internal LLVM options as well as lld and gold-plugin
options are added which enable upgrading all public vcall visibility
to linkage unit (hidden) visibility during LTO. This enables the more
aggressive WPD to kick in based on LTO time knowledge of the visibility
guarantees.
Support was added to all flavors of LTO WPD (regular, hybrid and
index-only), and to both the new and old LTO APIs.
Unfortunately it was not simple to split the first and second parts of
this part of the change (the unconditional emission of type tests and
the upgrading of the vcall visiblity) as I needed a way to upgrade the
public visibility on legacy WPD llvm assembly tests that don't include
linkage unit vcall visibility specifiers, to avoid a lot of test churn.
I also added a mechanism to LowerTypeTests that allows dropping type
test assume sequences we now aggressively insert when we invoke
distributed ThinLTO backends with null indexes, which is used in testing
mode, and which doesn't invoke the normal ThinLTO backend pipeline.
Depends on D71907 and D71911.
Reviewers: pcc, evgeny777, steven_wu, espindola
Subscribers: emaste, Prazek, inglorion, arichardson, hiraditya, MaskRay, dexonsmith, dang, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71913
Summary:
The old pass manager separated speed optimization and size optimization
levels into two unsigned values. Coallescing both in an enum in the new
pass manager may lead to unintentional casts and comparisons.
In particular, taking a look at how the loop unroll passes were constructed
previously, the Os/Oz are now (==new pass manager) treated just like O3,
likely unintentionally.
This change disallows raw comparisons between optimization levels, to
avoid such unintended effects. As an effect, the O{s|z} behavior changes
for loop unrolling and loop unroll and jam, matching O2 rather than O3.
The change also parameterizes the threshold values used for loop
unrolling, primarily to aid testing.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: zzheng, ychen, mehdi_amini, hiraditya, steven_wu, dexonsmith, dang, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72547
which is the default TLS model for non-PIC objects. This allows large/
many thread local variables or a compact/fast code in an executable.
Specification is same as that of GCC. For example, the code model
option precedes the TLS size option.
TLS access models other than local-exec are not changed. It means
supoort of the large code model is only in the local exec TLS model.
Patch By KAWASHIMA Takahiro (kawashima-fj <t-kawashima@fujitsu.com>)
Reviewers: dmgreen, mstorsjo, t.p.northover, peter.smith, ostannard
Reviewd By: peter.smith
Committed by: peter.smith
Differential Revision: https://reviews.llvm.org/D71688
down to pass builder in ltobackend.
Currently CodeGenOpts like UnrollLoops/VectorizeLoop/VectorizeSLP in clang
are not passed down to pass builder in ltobackend when new pass manager is
used. This is inconsistent with the behavior when new pass manager is used
and thinlto is not used. Such inconsistency causes slp vectorization pass
not being enabled in ltobackend for O3 + thinlto right now. This patch
fixes that.
Differential Revision: https://reviews.llvm.org/D72386
There's quite a lot of references to Polly in the LLVM CMake codebase. However
the registration pattern used by Polly could be useful to other external
projects: thanks to that mechanism it would be possible to develop LLVM
extension without touching the LLVM code base.
This patch has two effects:
1. Remove all code specific to Polly in the llvm/clang codebase, replaicing it
with a generic mechanism
2. Provide a generic mechanism to register compiler extensions.
A compiler extension is similar to a pass plugin, with the notable difference
that the compiler extension can be configured to be built dynamically (like
plugins) or statically (like regular passes).
As a result, people willing to add extra passes to clang/opt can do it using a
separate code repo, but still have their pass be linked in clang/opt as built-in
passes.
Differential Revision: https://reviews.llvm.org/D61446
clang/lib/CodeGen/CodeGenModule performs the -mpie-copy-relocations
check and sets dso_local on applicable global variables. We don't need
to duplicate the work in TargetMachine shouldAssumeDSOLocal.
Verified that -mpie-copy-relocations can still emit PC relative
relocations for external variable accesses.
clang -target x86_64 -fpie -mpie-copy-relocations -c => R_X86_64_PC32
clang -target aarch64 -fpie -mpie-copy-relocations -c => R_AARCH64_ADR_PREL_PG_HI21+R_AARCH64_LDST64_ABS_LO12_NC
Summary:
Follow-on to D66428 and D71193, to build the TLI per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
With D71193, the -fno-builtin* flags are converted to function
attributes, so we can now set this information per-function on the TLI.
In this patch, the TLI constructor is changed to take a Function, which
can be used to override the available builtins. The TLI is augmented
with an array that can be used to specify which builtins are not
available for the corresponding function. The available function checks
are changed to consult this override before checking the underlying
module level baseline TLII. New code is added to set this override
array based on the attributes.
I also removed the code that sets availability in the TLII in clang from
the options, which is no longer needed.
I removed a per-Triple caching of TLII objects in the analysis object,
as it is based on the Module's Triple which is the same for all
functions in any case. Is there a case where we would be compiling
multiple Modules with different Triples in one compilation?
Finally, I have changed the legacy analysis wrapper to create and use
the new PM analysis class (TargetLibraryAnalysis) in getTLI. This is
consistent with the behavior of getTTI for the legacy
TargetTransformInfo analysis. This change means that getTLI now creates
a new TLI on each call (although that should be very cheap as we cache
the module level TLII, and computing the per-function
attribute based availability should also be reasonably efficient).
I measured the compile time for a large C++ file with tens of thousands
of functions and as expected there was no increase.
Reviewers: chandlerc, hfinkel, gchatelet
Subscribers: mehdi_amini, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67923
Summary:
This adds support for embedding bitcode in a binary during LTO. The libLTO gains supports the `-lto-embed-bitcode` flag. The option allows users of the LTO library to embed a bitcode section. For example, LLD can pass the option via `ld.lld -mllvm=-lto-embed-bitcode`.
This feature allows doing something comparable to `clang -c -fembed-bitcode`, but on the (LTO) linker level. Having bitcode alongside native code has many use-cases. To give an example, the MacOS linker can create a `-bitcode_bundle` section containing bitcode. Also, having this feature built into LLVM is an alternative to 3rd party tools such as [[ https://github.com/travitch/whole-program-llvm | wllvm ]] or [[ https://github.com/SRI-CSL/gllvm | gllvm ]]. As with these tools, this feature simplifies creating "whole-program" llvm bitcode files, but in contrast to wllvm/gllvm it does not rely on a specific llvm frontend/driver.
Patch by Josef Eisl <josef.eisl@oracle.com>
Reviewers: #llvm, #clang, rsmith, pcc, alexshap, tejohnson
Reviewed By: tejohnson
Subscribers: tejohnson, mehdi_amini, inglorion, hiraditya, aheejin, steven_wu, dexonsmith, dang, cfe-commits, llvm-commits, #llvm, #clang
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68213
This simplifies code where no extra details are required
Also don't write out detail when it is empty.
Differential Revision: https://reviews.llvm.org/D71347
Avoids the need to include TargetMachine.h from various places just for
an enum. Various other enums live here, such as the optimization level,
TLS model, etc. Data suggests that this change probably doesn't matter,
but it seems nice to have anyway.
This adds a flag to LLVM and clang to always generate a .debug_frame
section, even if other debug information is not being generated. In
situations where .eh_frame would normally be emitted, both .debug_frame
and .eh_frame will be used.
Differential Revision: https://reviews.llvm.org/D67216
Summary:
If we insert them from function pass some analysis may be missing or invalid.
Fixes PR42877.
Reviewers: eugenis, leonardchan
Reviewed By: leonardchan
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68832
> llvm-svn: 374481
Signed-off-by: Vitaly Buka <vitalybuka@google.com>
llvm-svn: 374527
Summary:
If we insert them from function pass some analysis may be missing or invalid.
Fixes PR42877.
Reviewers: eugenis, leonardchan
Reviewed By: leonardchan
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68832
llvm-svn: 374481
Summary:
This adds `-fwasm-exceptions` (in similar fashion with
`-fdwarf-exceptions` or `-fsjlj-exceptions`) that turns on everything
with wasm exception handling from the frontend to the backend.
We currently have `-mexception-handling` in clang frontend, but this is
only about the architecture capability and does not turn on other
necessary options such as the exception model in the backend. (This can
be turned on with `llc -exception-model=wasm`, but llc is not invoked
separately as a command line tool, so this option has to be transferred
from clang.)
Turning on `-fwasm-exceptions` in clang also turns on
`-mexception-handling` if not specified, and will error out if
`-mno-exception-handling` is specified.
Reviewers: dschuff, tlively, sbc100
Subscribers: aprantl, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67208
llvm-svn: 371708
We're running into linker errors from missing sancov sections:
```
ld.lld: error: relocation refers to a discarded section: __sancov_guards
>>> defined in user-arm64-ubsan-sancov-full.shlib/obj/third_party/ulib/scudo/scudo.wrappers_c.cc.o
>>> referenced by common.h:26 (../../zircon/third_party/ulib/scudo/common.h:26)
... many other references
```
I believe this is due to a pass in the default pipeline that somehow discards
these sections. The ModuleSanitizerCoveragePass was initially added at the
start of the pipeline. This now adds it to the end of the pipeline for
optimized and unoptimized builds.
Differential Revision: https://reviews.llvm.org/D67323
llvm-svn: 371326
Clang patch to adapt to LLVM changes in D66428 that make the TLI
require a Function. There is no longer a module-level
TargetLibraryAnalysis, so remove its registration
llvm-svn: 371285
This patch merges the sancov module and funciton passes into one module pass.
The reason for this is because we ran into an out of memory error when
attempting to run asan fuzzer on some protobufs (pc.cc files). I traced the OOM
error to the destructor of SanitizerCoverage where we only call
appendTo[Compiler]Used which calls appendToUsedList. I'm not sure where precisely
in appendToUsedList causes the OOM, but I am able to confirm that it's calling
this function *repeatedly* that causes the OOM. (I hacked sancov a bit such that
I can still create and destroy a new sancov on every function run, but only call
appendToUsedList after all functions in the module have finished. This passes, but
when I make it such that appendToUsedList is called on every sancov destruction,
we hit OOM.)
I don't think the OOM is from just adding to the SmallSet and SmallVector inside
appendToUsedList since in either case for a given module, they'll have the same
max size. I suspect that when the existing llvm.compiler.used global is erased,
the memory behind it isn't freed. I could be wrong on this though.
This patch works around the OOM issue by just calling appendToUsedList at the
end of every module run instead of function run. The same amount of constants
still get added to llvm.compiler.used, abd we make the pass usage and logic
simpler by not having any inter-pass dependencies.
Differential Revision: https://reviews.llvm.org/D66988
llvm-svn: 370971
Match the behavior of D65009 under the new pass manager. This addresses
the test clang/test/CodeGen/split-lto-unit.c when running under the new
PM.
Differential Revision: https://reviews.llvm.org/D66488
llvm-svn: 369550
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368942
Summary: https://reviews.llvm.org/D50923 enabled the IR printing support for the new pass manager, but only for the case when `opt` tool is used as a driver. This patch is to enable the IR printing when `clang` is used as a driver.
Reviewers: fedor.sergeev, philip.pfaffe
Subscribers: cfe-commits, yamauchi, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65975
llvm-svn: 368804
Add PGO support at -O0 in the experimental new pass manager to sync the
behavior of the legacy pass manager.
Also change the test of gcc-flag-compatibility.c for more complete test:
(1) change the match string to "profc" and "profd" to ensure the
instrumentation is happening.
(2) add IR format proftext so that PGO use compilation is tested.
Differential Revision: https://reviews.llvm.org/D64029
llvm-svn: 367628
changes were made to the patch since then.
--------
[NewPM] Port Sancov
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
llvm-svn: 367053
Summary:
Regular LTO modules do not need LTO Unit splitting, only ThinLTO does
(they must be consistently split into regular and Thin units for
optimizations such as whole program devirtualization and lower type
tests). In order to avoid spurious errors from LTO when combining with
split ThinLTO modules, always set this flag for regular LTO modules.
Reviewers: pcc
Subscribers: mehdi_amini, Prazek, inglorion, steven_wu, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65009
llvm-svn: 366623
Summary:
This patch removes the `default` case from some switches on
`llvm::Triple::ObjectFormatType`, and cases for the missing enumerators
(`UnknownObjectFormat`, `Wasm`, and `XCOFF`) are then added.
For `UnknownObjectFormat`, the effect of the action for the `default`
case is maintained; otherwise, where `llvm_unreachable` is called,
`report_fatal_error` is used instead.
Where the `default` case returns a default value, `report_fatal_error`
is used for XCOFF as a placeholder. For `Wasm`, the effect of the action
for the `default` case in maintained.
The code is structured to avoid strongly implying that the `Wasm` case
is present for any reason other than to make the switch cover all
`ObjectFormatType` enumerator values.
Reviewers: sfertile, jasonliu, daltenty
Reviewed By: sfertile
Subscribers: hiraditya, aheejin, sunfish, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64222
llvm-svn: 366544
This will let us instrument globals during initialization. This required
making the new PM pass a module pass, which should still provide access to
analyses via the ModuleAnalysisManager.
Differential Revision: https://reviews.llvm.org/D64843
llvm-svn: 366379
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
llvm-svn: 365838