scoped enumeration members. Later uses of an enumeration temploid as a nested
name specifier should cause its instantiation. Plus some groundwork for
explicit specialization of member enumerations of class templates.
llvm-svn: 152750
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131
pointers and block pointers). We use dummy definitions to keep the
invariant that an implicit, used definition has a body; IR generation
will substitute the actual contents, since they can't be represented
as C++.
For the block pointer case, compute the copy-initialization needed to
capture the lambda object in the block, which IR generation will need
later.
llvm-svn: 150645
instead of having a special-purpose function.
- ActOnCXXDirectInitializer, which was mostly duplication of
AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days
ago), is dropped completely.
- MultiInitializer, which was an ugly hack I added, is dropped again.
- We now have the infrastructure in place to distinguish between
int x = {1};
int x({1});
int x{1};
-- VarDecl now has getInitStyle(), which indicates which of the above was used.
-- CXXConstructExpr now has a flag to indicate that it represents list-
initialization, although this is not yet used.
- InstantiateInitializer was renamed to SubstInitializer and simplified.
- ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which
always produces a ParenListExpr. Placed that so far failed to convert that
back to a ParenExpr containing comma operators have been fixed. I'm pretty
sure I could have made a crashing test case before this.
The end result is a (I hope) considerably cleaner design of initializers.
More importantly, the fact that I can now distinguish between the various
initialization kinds means that I can get the tricky generalized initializer
test cases Johannes Schaub supplied to work. (This is not yet done.)
This commit passed self-host, with the resulting compiler passing the tests. I
hope it doesn't break more complicated code. It's a pretty big change, but one
that I feel is necessary.
llvm-svn: 150318
the direct serialization of the linked-list structure. Instead, use a
scheme similar to how we handle redeclarations, with redeclaration
lists on the side. This addresses several issues:
- In cases involving mixing and matching of many categories across
many modules, the linked-list structure would not be consistent
across different modules, and categories would get lost.
- If a module is loaded after the class definition and its other
categories have already been loaded, we wouldn't see any categories
in the newly-loaded module.
llvm-svn: 149112
class/Objective-C protocol suffices get all of the redeclarations of
that declaration wired to the definition, we no longer need to record
the identity of the definition in every declaration. Instead, just
record a bit to indicate whether a particular declaration is the
definition.
llvm-svn: 148224
chains, again. The prior implementation was very linked-list oriented, and
the list-splicing logic was both fairly convoluted (when loading from
multiple modules) and failed to preserve a reasonable ordering for the
redeclaration chains.
This new implementation uses a simpler strategy, where we store the
ordered redeclaration chains in an array-like structure (indexed based
on the first declaration), and use that ordering to add individual
deserialized declarations to the end of the existing chain. That way,
the chain mimics the ordering from its modules, and a bug somewhere is
far less likely to result in a broken linked list.
llvm-svn: 148222
we have a redeclarable type, and only use the new virtual versions
(getPreviousDeclImpl() and getMostRecentDeclImpl()) when we don't have
that type information. This keeps us from penalizing users with strict
type information (and is the moral equivalent of a "final" method).
Plus, settle on the names getPreviousDecl() and getMostRecentDecl()
throughout.
llvm-svn: 148187
Redeclarable<RedeclarableTemplateDecl>, eliminating a bunch of
redeclaration-chain logic both in RedeclarableTemplateDecl and
especially in its (de-)serialization.
As part of this, eliminate the RedeclarableTemplate<> class template,
which was an abstraction that didn't actually save anything.
llvm-svn: 148181
I was forced to change test/SemaCXX/linkage.cpp because we aren't actually modeling extern "C" in the AST the way that testcase expects; we were not printing a warning only because we skipped the relevant check. Someone who actually understands the semantics here should fix that.
llvm-svn: 148158
to Redeclarable<NamespaceDecl>, so that we benefit from the improveed
redeclaration deserialization and merging logic provided by
Redeclarable<T>. Otherwise, no functionality change.
As a drive-by fix, collapse the "inline" bit into the low bit of the
original namespace/anonymous namespace, saving 8 bytes per
NamespaceDecl on x86_64.
llvm-svn: 147729
into the two unused lower bits of the NextDeclInContext link, dropping
the number of bits in Decl down to 32, and saving 8 bytes per
declaration on x86-64.
llvm-svn: 147660
different modules. This implementation is a first approximation of
what we want, using only the function type to determine
equivalence. Later, we'll want to deal with some of the more subtle
issues, including:
- C allows a prototyped declaration and a non-prototyped declaration
to be merged, which we should support
- We may want to ignore the return type when merging, then
complain if the return types differ. Or, we may want to leave it
as it us, so that we only complain if overload resolution
eventually fails.
- C++ non-static member functions need to consider cv-qualifiers
and ref-qualifiers.
- Function templates need to consider the template parameters and
return type.
- Function template specializations will have special rules.
- We can now (accidentally!) end up overloading in C, even without
the "overloadable" attribute, and will need to detect this at some
point.
The actual detection of "is this an overload?" is implemented by
Sema::IsOverload(), which will need to be moved into the AST library
for re-use here. That will be a future refactor.
llvm-svn: 147534
for Objective-C protocols, including:
- Using the first declaration as the canonical declaration
- Using the definition as the primary DeclContext
- Making sure that all declarations have a pointer to the definition
data, and that we know which declaration is the definition
- Serialization support for redeclaration chains and for adding
definitions to already-serialized declarations.
However, note that we're not taking advantage of much of this code
yet, because we're still re-using ObjCProtocolDecls.
llvm-svn: 147410
separately-allocated DefinitionData structure. Introduce various
functions that will help with the separation of declarations from
definitions (isThisDeclarationADefinition(), hasDefinition(),
getDefinition()).
llvm-svn: 147408
with a definition pointer (e.g., C++ and Objective-C classes), zip
through the redeclaration chain to make sure that all of the
declarations point to the definition data.
As part of this, realized again why the first redeclaration of an
entity in a file is important, and brought back that idea.
llvm-svn: 146886
redeclaration templates (RedeclarableTemplateDecl), similarly to the
way (de-)serialization is implemented for Redeclarable<T>. In the
process, found a simpler formulation for handling redeclaration
chains and implemented that in both places.
The new test establishes that we're building the redeclaration chains
properly. However, the FIXME indicates where we're tickling a
different bug that has to do with us not setting the DefinitionData
pointer properly in redeclarations that we detected after the
definition itself was deserialized. The (separable) fix for that bug
is forthcoming.
llvm-svn: 146883
which there are no redeclarations. This reduced by size of the PCH
file for Cocoa.h by ~650k: ~536k of that was in the new
LOCAL_REDECLARATIONS table, which went from a ridiculous 540k down to
an acceptable 3.5k, while the rest was due to the more compact
abbreviated representation of redeclarable declaration kinds (which no
longer need to store the 'first' declaration ID).
llvm-svn: 146869
variable is initialized by a non-constant expression, and pass in the variable
being declared so that earlier-initialized fields' values can be used.
Rearrange VarDecl init evaluation to make this possible, and in so doing fix a
long-standing issue in our C++ constant expression handling, where we would
mishandle cases like:
extern const int a;
const int n = a;
const int a = 5;
int arr[n];
Here, n is not initialized by a constant expression, so can't be used in an ICE,
even though the initialization expression would be an ICE if it appeared later
in the TU. This requires computing whether the initializer is an ICE eagerly,
and saving that information in PCH files.
llvm-svn: 146856
chains. The previous implementation relied heavily on the declaration
chain being stored as a (circular) linked list on disk, as it is in
memory. However, when deserializing from multiple modules, the
different chains could get mixed up, leading to broken declaration chains.
The new solution keeps track of the first and last declarations in the
chain for each module file. When we load a declaration, we search all
of the module files for redeclarations of that declaration, then
splice together all of the lists into a coherent whole (along with any
redeclarations that were actually parsed).
As a drive-by fix, (de-)serialize the redeclaration chains of
TypedefNameDecls, which had somehow gotten missed previously. Add a
test of this serialization.
This new scheme creates a redeclaration table that is fairly large in
the PCH file (on the order of 400k for Cocoa.h's 12MB PCH file). The
table is mmap'd in and searched via a binary search, but it's still
quite large. A future tweak will eliminate entries for declarations
that have no redeclarations anywhere, and should
drastically reduce the size of this table.
llvm-svn: 146841
applies to an actual definition. Plus, clarify the purpose of this
field and give the accessor a different name, since getLocEnd() is
supposed to be the same as getSourceRange().getEnd().
llvm-svn: 146694
declarations and definitions) as ObjCInterfaceDecls within the same
redeclaration chain. This new representation matches what we do for
C/C++ variables/functions/classes/templates/etc., and makes it
possible to answer the query "where are all of the declarations of
this class?"
llvm-svn: 146679
redeclaration chain for Objective-C classes, including:
- Using the first declaration as the canonical declaration.
- Using the definition as the primary DeclContext
- Making sure that all declarations have a pointer to the definition
data, and the definition knows that it is the definition.
- Serialization support for when a definition gets added to a
declaration that comes from an AST file.
However, note that we're not taking advantage of much of this code
yet, because we're still re-using ObjCInterfaceDecls.
llvm-svn: 146667
separately-allocated DefinitionData structure, which we manage the
same way as CXXRecordDecl::DefinitionData. This prepares the way for
making ObjCInterfaceDecls redeclarable, to more accurately model
forward declarations of Objective-C classes and eliminate the mutation
of ObjCInterfaceDecl that causes us serious trouble in the AST reader.
Note that ObjCInterfaceDecl's accessors are fairly robust against
being applied to forward declarations, because Clang (and Sema in
particular) doesn't perform RequireCompleteType/hasDefinition() checks
everywhere it has to. Each of these overly-robust cases is marked with
a FIXME, which we can tackle over time.
llvm-svn: 146644
inside an objc container that "contains" other file-level declarations.
When getting the array of file-level declarations that overlap with a file region,
we failed to report that the region overlaps with an objc container, if
the container had other file-level declarations declared lexically inside it.
Fix this by marking such declarations as "isTopLevelDeclInObjCContainer" in the AST
and handling them appropriately.
llvm-svn: 145109