Handles lowering from the tosa CastOp to the equivalent linalg lowering. It
includes support for interchange between bool, int, and floating point.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D98828
Adds lowerings for logical_* boolean operations. Each of these ops only operate
on booleans allowing simple lowerings.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D98910
* Makes the wrapped functions of the `@linalg_structured_op` decorator callable such that they emit IR imperatively when invoked.
* There are numerous TODOs that I will keep working through to achieve generality.
* Will true up exception handling tests as the feature progresses (for things that are actually errors once everything is implemented).
* Includes the addition of an `isinstance` method on concrete types in the Python API.
Differential Revision: https://reviews.llvm.org/D98754
This change combines for ROCm what was done for CUDA in D97463, D98203, D98360, and D98396.
I did not try to compile SerializeToHsaco.cpp or test mlir/test/Integration/GPU/ROCM because I don't have an AMD card. I fixed the things that had obvious bit-rot though.
Reviewed By: whchung
Differential Revision: https://reviews.llvm.org/D98447
When deleting operations in DCE, the algorithm uses a post-order walk of
the IR to ensure that value uses were erased before value defs. Graph
regions do not have the same structural invariants as SSA CFG, and this
post order walk could delete value defs before uses. This problem is
guaranteed to occur when there is a cycle in the use-def graph.
This change stops DCE from visiting the operations and blocks in any
meaningful order. Instead, we rely on explicitly dropping all uses of a
value before deleting it.
Reviewed By: mehdi_amini, rriddle
Differential Revision: https://reviews.llvm.org/D98919
This adds a tosa.apply_scale operation that handles the scaling operation
common to quantized operatons. This scalar operation is lowered
in TosaToStandard.
We use a separate ApplyScale factorization as this is a replicable pattern
within TOSA. ApplyScale can be reused within pool/convolution/mul/matmul
for their quantized variants.
Tests are added to both tosa-to-standard and tosa-to-linalg-on-tensors
that verify each pass is correct.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D98753
Includes lowering for tosa.concat with indice computation with subtensor insert
operations. Includes tests along two different indices.
Differential Revision: https://reviews.llvm.org/D98813
This reverts commit 32a744ab20.
CI is broken:
test/Dialect/Linalg/bufferize.mlir:274:12: error: CHECK: expected string not found in input
// CHECK: %[[MEMREF:.*]] = tensor_to_memref %[[IN]] : memref<?xf32>
^
`BufferizeAnyLinalgOp` fails because `FillOp` is not a `LinalgGenericOp` and it fails while reading operand sizes attribute.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98671
Do not limit the number of arguments in rewriter pattern.
Introduce separate `FmtStrVecObject` class to handle
format of variadic `std::string` array.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97839
This covers cases that are not folded away because the extent tensor type
becomes more concrete in the process.
Differential Revision: https://reviews.llvm.org/D98782
This has been a TODO for a while, and prevents breakages for attributes/types that contain floats that can't roundtrip outside of the hex format.
Differential Revision: https://reviews.llvm.org/D98808
Add a feature to `EnumAttr` definition to generate
specialized Attribute class for the particular enumeration.
This class will inherit `StringAttr` or `IntegerAttr` and
will override `classof` and `getValue` methods.
With this class the enumeration predicate can be checked with simple
RTTI calls (`isa`, `dyn_cast`) and it will return the typed enumeration
directly instead of raw string/integer.
Based on the following discussion:
https://llvm.discourse.group/t/rfc-add-enum-attribute-decorator-class/2252
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97836
'ForOpIterArgsFolder' can now remove iterator arguments (and corresponding
results) with no use.
Example:
```
%cst = constant 32 : i32
%0:2 = scf.for %arg1 = %lb to %ub step %step iter_args(%arg2 = %arg0, %arg3 = %cst)
-> (i32, i32) {
%1 = addu %arg2, %cst : i32
scf.yield %1, %1 : i32, i32
}
use(%0#0)
```
%arg3 is not used in the block, and its corresponding result `%0#1` has no use,
thus remove the iter argument.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98711
Returning structs directly in LLVM does not necessarily align with the C ABI of
the platform. This might happen to work on Linux but for small structs this
breaks on Windows. With this change, the wrappers work platform independently.
Differential Revision: https://reviews.llvm.org/D98725
This commit fixes the lowering of `Affine.IfOp` to `SCF.IfOp` in the
presence of yield values. These changes have been made as a part of
`-lower-affine` pass.
Differential Revision: https://reviews.llvm.org/D98760
Some parameters to attributes and types rely on special comparison routines other than operator== to ensure equality. This revision adds support for those parameters by allowing them to specify a `comparator` code block that determines if `$_lhs` and `$_rhs` are equal. An example of one of these paramters is APFloat, which requires `bitwiseIsEqual` for bitwise comparison (which we want for attribute equality).
Differential Revision: https://reviews.llvm.org/D98473
Supporting ranges in the byte code requires additional complexity, given that a range can't be easily representable as an opaque void *, as is possible with the existing bytecode value types (Attribute, Type, Value, etc.). To enable representing a range with void *, an auxillary storage is used for the actual range itself, with the pointer being passed around in the normal byte code memory. For type ranges, a TypeRange is stored. For value ranges, a ValueRange is stored. The above problem represents a majority of the complexity involved in this revision, the rest is adapting/adding byte code operations to support the changes made to the PDL interpreter in the parent revision.
After this revision, PDL will have initial end-to-end support for variadic operands/results.
Differential Revision: https://reviews.llvm.org/D95723
This revision extends the PDL Interpreter dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl_interp.check_types : Compare a range of types with a known range.
* pdl_interp.create_types : Create a constant range of types.
* pdl_interp.get_operands : Get a range of operands from an operation.
* pdl_interp.get_results : Get a range of results from an operation.
* pdl_interp.switch_types : Switch on a range of types.
This revision handles adding support in the interpreter dialect and the conversion from PDL to PDLInterp. Support for variadic operands and results in the bytecode will be added in a followup revision.
Differential Revision: https://reviews.llvm.org/D95722
This revision extends the PDL dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl.operands : Define a range of input operands.
* pdl.results : Extract a result group from an operation.
* pdl.types : Define a handle to a range of types.
Support for these in the pdl interpreter dialect and byte code will be added in followup revisions.
Differential Revision: https://reviews.llvm.org/D95721
This has a numerous amount of benefits, given the overly clunky nature of CreateNativeOp:
* Users can now call into arbitrary rewrite functions from inside of PDL, allowing for more natural interleaving of PDL/C++ and enabling for more of the pattern to be in PDL.
* Removes the need for an additional set of C++ functions/registry/etc. The new ApplyNativeRewriteOp will use the same PDLRewriteFunction as the existing RewriteOp. This reduces the API surface area exposed to users.
This revision also introduces a new PDLResultList class. This class is used to provide results of native rewrite functions back to PDL. We introduce a new class instead of using a SmallVector to simplify the work necessary for variadics, given that ranges will require some changes to the structure of PDLValue.
Differential Revision: https://reviews.llvm.org/D95720
Up until now, results have been represented as additional results to a pdl.operation. This is fairly clunky, as it mismatches the representation of the rest of the IR constructs(e.g. pdl.operand) and also isn't a viable representation for operations returned by pdl.create_native. This representation also creates much more difficult problems when factoring in support for variadic result groups, optional results, etc. To resolve some of these problems, and simplify adding support for variable length results, this revision extracts the representation for results out of pdl.operation in the form of a new `pdl.result` operation. This operation returns the result of an operation at a given index, e.g.:
```
%root = pdl.operation ...
%result = pdl.result 0 of %root
```
Differential Revision: https://reviews.llvm.org/D95719
Enhance 'ForOpIterArgsFolder' to remove unused iteration arguments in a
scf::ForOp. If the block argument corresponding to the given iterator has no
use and the yielded value equals the input, we fold it away.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98503
The Intel Advanced Matrix Extensions (AMX) provides a tile matrix
multiply unit (TMUL), a tile control register (TILECFG), and eight
tile registers TMM0 through TMM7 (TILEDATA). This new MLIR dialect
provides a bridge between MLIR concepts like vectors and memrefs
and the lower level LLVM IR details of AMX.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98470
A previous commit moved multiple ops from Standard to MemRef dialect.
Some of these ops are exercised in Python bindings. Enable bindings for
the newly created MemRef dialect and update a test accordingly.
The patch in question broke the build with shared libraries due to
missing dependencies, one of which would have been circular between
MLIRStandard and MLIRMemRef if added. Fix this by moving more code
around and swapping the dependency direction. MLIRMemRef now depends on
MLIRStandard, but MLIRStandard does _not_ depend on MLIRMemRef.
Arguably, this is the right direction anyway since numerous libraries
depend on MLIRStandard and don't necessarily need to depend on
MLIRMemref.
Other otable changes include:
- some EDSC code is moved inline to MemRef/EDSC/Intrinsics.h because it
creates MemRef dialect operations;
- a utility function related to shape moved to BuiltinTypes.h/cpp
because it only realtes to shaped types and not any particular dialect
(standard dialect is erroneously believed to contain MemRefType);
- a Python test for the standard dialect is disabled completely because
the ops it tests moved to the new MemRef dialect, but it is not
exposed to Python bindings, and the change for that is non-trivial.
This reverts commit b5d9a3c923.
The commit introduced a memory error in canonicalization/operation
walking that is exposed when compiled with ASAN. It leads to crashes in
some "release" configurations.
We know that all ConstantLike operations have one result and no operands,
so check this first before doing the trait check. This change speeds up
Canonicalize on a CIRCT testcase by ~5%.
Differential Revision: https://reviews.llvm.org/D98615
Two changes:
1) Change the canonicalizer to walk the function in top-down order instead of
bottom-up order. This composes well with the "top down" nature of constant
folding and simplification, reducing iterations and re-evaluation of ops in
simple cases.
2) Explicitly enter existing constants into the OperationFolder table before
canonicalizing. Previously we would "constant fold" them and rematerialize
them, wastefully recreating a bunch fo constants, which lead to pointless
memory traffic.
Both changes together provide a 33% speedup for canonicalize on some mid-size
CIRCT examples.
One artifact of this change is that the constants generated in normal pattern
application get inserted at the top of the function as the patterns are applied.
Because of this, we get "inverted" constants more often, which is an aethetic
change to the IR but does permute some testcases.
Differential Revision: https://reviews.llvm.org/D98609