Previously low benefit op-specific patterns never had a chance to match
even if high benefit op-agnostic pattern failed to match.
This was already fixed upstream, this commit just adds testscase
Differential Revision: https://reviews.llvm.org/D98513
Handles lowering from the tosa CastOp to the equivalent linalg lowering. It
includes support for interchange between bool, int, and floating point.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D98828
Adds lowerings for logical_* boolean operations. Each of these ops only operate
on booleans allowing simple lowerings.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D98910
* Makes the wrapped functions of the `@linalg_structured_op` decorator callable such that they emit IR imperatively when invoked.
* There are numerous TODOs that I will keep working through to achieve generality.
* Will true up exception handling tests as the feature progresses (for things that are actually errors once everything is implemented).
* Includes the addition of an `isinstance` method on concrete types in the Python API.
Differential Revision: https://reviews.llvm.org/D98754
This change combines for ROCm what was done for CUDA in D97463, D98203, D98360, and D98396.
I did not try to compile SerializeToHsaco.cpp or test mlir/test/Integration/GPU/ROCM because I don't have an AMD card. I fixed the things that had obvious bit-rot though.
Reviewed By: whchung
Differential Revision: https://reviews.llvm.org/D98447
When deleting operations in DCE, the algorithm uses a post-order walk of
the IR to ensure that value uses were erased before value defs. Graph
regions do not have the same structural invariants as SSA CFG, and this
post order walk could delete value defs before uses. This problem is
guaranteed to occur when there is a cycle in the use-def graph.
This change stops DCE from visiting the operations and blocks in any
meaningful order. Instead, we rely on explicitly dropping all uses of a
value before deleting it.
Reviewed By: mehdi_amini, rriddle
Differential Revision: https://reviews.llvm.org/D98919
Add extra `type.isa<FloatType>()` check to `FloatAttr::get(Type, double)` method.
Otherwise it tries to call `type.cast<FloatType>()`, which fails with assertion in Debug mode.
The `!type.isa<FloatType>()` case just redirercts the call to `FloatAttr::get(Type, APFloat)`,
which will perform the actual check and emit appropriate error.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D98764
This adds a tosa.apply_scale operation that handles the scaling operation
common to quantized operatons. This scalar operation is lowered
in TosaToStandard.
We use a separate ApplyScale factorization as this is a replicable pattern
within TOSA. ApplyScale can be reused within pool/convolution/mul/matmul
for their quantized variants.
Tests are added to both tosa-to-standard and tosa-to-linalg-on-tensors
that verify each pass is correct.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D98753
Includes lowering for tosa.concat with indice computation with subtensor insert
operations. Includes tests along two different indices.
Differential Revision: https://reviews.llvm.org/D98813
This reverts commit 32a744ab20.
CI is broken:
test/Dialect/Linalg/bufferize.mlir:274:12: error: CHECK: expected string not found in input
// CHECK: %[[MEMREF:.*]] = tensor_to_memref %[[IN]] : memref<?xf32>
^
`BufferizeAnyLinalgOp` fails because `FillOp` is not a `LinalgGenericOp` and it fails while reading operand sizes attribute.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98671
Do not limit the number of arguments in rewriter pattern.
Introduce separate `FmtStrVecObject` class to handle
format of variadic `std::string` array.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97839
This covers cases that are not folded away because the extent tensor type
becomes more concrete in the process.
Differential Revision: https://reviews.llvm.org/D98782
This has been a TODO for a while, and prevents breakages for attributes/types that contain floats that can't roundtrip outside of the hex format.
Differential Revision: https://reviews.llvm.org/D98808
This fixes broken JIT functionality on emulator platforms.
With Alex' recent movement towards squashing llvm ir dialects
into target specific dialects, we now must ensure these dialects
are registered to the cpu runner to ensure JIT can lower this
to proper LLVM IR before handing this off to the backend.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D98727
Add a feature to `EnumAttr` definition to generate
specialized Attribute class for the particular enumeration.
This class will inherit `StringAttr` or `IntegerAttr` and
will override `classof` and `getValue` methods.
With this class the enumeration predicate can be checked with simple
RTTI calls (`isa`, `dyn_cast`) and it will return the typed enumeration
directly instead of raw string/integer.
Based on the following discussion:
https://llvm.discourse.group/t/rfc-add-enum-attribute-decorator-class/2252
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97836
'ForOpIterArgsFolder' can now remove iterator arguments (and corresponding
results) with no use.
Example:
```
%cst = constant 32 : i32
%0:2 = scf.for %arg1 = %lb to %ub step %step iter_args(%arg2 = %arg0, %arg3 = %cst)
-> (i32, i32) {
%1 = addu %arg2, %cst : i32
scf.yield %1, %1 : i32, i32
}
use(%0#0)
```
%arg3 is not used in the block, and its corresponding result `%0#1` has no use,
thus remove the iter argument.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98711
Returning structs directly in LLVM does not necessarily align with the C ABI of
the platform. This might happen to work on Linux but for small structs this
breaks on Windows. With this change, the wrappers work platform independently.
Differential Revision: https://reviews.llvm.org/D98725
Added additional information about the SSA like properties
that has to be fulfilled in the bufferization steps.
Differential Revision: https://reviews.llvm.org/D95522
This commit fixes the lowering of `Affine.IfOp` to `SCF.IfOp` in the
presence of yield values. These changes have been made as a part of
`-lower-affine` pass.
Differential Revision: https://reviews.llvm.org/D98760
Some parameters to attributes and types rely on special comparison routines other than operator== to ensure equality. This revision adds support for those parameters by allowing them to specify a `comparator` code block that determines if `$_lhs` and `$_rhs` are equal. An example of one of these paramters is APFloat, which requires `bitwiseIsEqual` for bitwise comparison (which we want for attribute equality).
Differential Revision: https://reviews.llvm.org/D98473
Supporting ranges in the byte code requires additional complexity, given that a range can't be easily representable as an opaque void *, as is possible with the existing bytecode value types (Attribute, Type, Value, etc.). To enable representing a range with void *, an auxillary storage is used for the actual range itself, with the pointer being passed around in the normal byte code memory. For type ranges, a TypeRange is stored. For value ranges, a ValueRange is stored. The above problem represents a majority of the complexity involved in this revision, the rest is adapting/adding byte code operations to support the changes made to the PDL interpreter in the parent revision.
After this revision, PDL will have initial end-to-end support for variadic operands/results.
Differential Revision: https://reviews.llvm.org/D95723
This revision extends the PDL Interpreter dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl_interp.check_types : Compare a range of types with a known range.
* pdl_interp.create_types : Create a constant range of types.
* pdl_interp.get_operands : Get a range of operands from an operation.
* pdl_interp.get_results : Get a range of results from an operation.
* pdl_interp.switch_types : Switch on a range of types.
This revision handles adding support in the interpreter dialect and the conversion from PDL to PDLInterp. Support for variadic operands and results in the bytecode will be added in a followup revision.
Differential Revision: https://reviews.llvm.org/D95722
This revision extends the PDL dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl.operands : Define a range of input operands.
* pdl.results : Extract a result group from an operation.
* pdl.types : Define a handle to a range of types.
Support for these in the pdl interpreter dialect and byte code will be added in followup revisions.
Differential Revision: https://reviews.llvm.org/D95721
This has a numerous amount of benefits, given the overly clunky nature of CreateNativeOp:
* Users can now call into arbitrary rewrite functions from inside of PDL, allowing for more natural interleaving of PDL/C++ and enabling for more of the pattern to be in PDL.
* Removes the need for an additional set of C++ functions/registry/etc. The new ApplyNativeRewriteOp will use the same PDLRewriteFunction as the existing RewriteOp. This reduces the API surface area exposed to users.
This revision also introduces a new PDLResultList class. This class is used to provide results of native rewrite functions back to PDL. We introduce a new class instead of using a SmallVector to simplify the work necessary for variadics, given that ranges will require some changes to the structure of PDLValue.
Differential Revision: https://reviews.llvm.org/D95720
Up until now, results have been represented as additional results to a pdl.operation. This is fairly clunky, as it mismatches the representation of the rest of the IR constructs(e.g. pdl.operand) and also isn't a viable representation for operations returned by pdl.create_native. This representation also creates much more difficult problems when factoring in support for variadic result groups, optional results, etc. To resolve some of these problems, and simplify adding support for variable length results, this revision extracts the representation for results out of pdl.operation in the form of a new `pdl.result` operation. This operation returns the result of an operation at a given index, e.g.:
```
%root = pdl.operation ...
%result = pdl.result 0 of %root
```
Differential Revision: https://reviews.llvm.org/D95719