This patch introduces tablegen class MCStatement.
Currently, an MCStatement can be either a return statement, or a switch
statement.
```
MCStatement:
MCReturnStatement
MCOpcodeSwitchStatement
```
A MCReturnStatement expands to a return statement, and the boolean expression
associated with the return statement is described by a MCInstPredicate.
An MCOpcodeSwitchStatement is a switch statement where the condition is a check
on the machine opcode. It allows the definition of multiple checks, as well as a
default case. More details on the grammar implemented by these two new
constructs can be found in the diff for TargetInstrPredicates.td.
This patch makes it easier to read the body of auto-generated TargetInstrInfo
predicates.
In future, I plan to reuse/extend the MCStatement grammar to describe more
complex target hooks. For now, this is just a first step (mostly a minor
cosmetic change to polish the new predicates framework).
Differential Revision: https://reviews.llvm.org/D50457
llvm-svn: 339352
Summary:
The interface to get size and spill size of a register
was moved from MCRegisterInfo to TargetRegisterInfo over
a year ago. Afaik the old interface has bee around
to give out-of-tree targets a chance to adapt to the
new interface.
One problem with the old MCRegisterClass::PhysRegSize was that
it represented the size of a register as "size in bits" / 8.
So a register had to be a multiple of eight bits wide for the
size to be correct (and the byte size for the target needed to
be eight bits).
Reviewers: kparzysz, qcolombet
Reviewed By: kparzysz
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47199
llvm-svn: 339350
Changes the default Windows target triple returned by
GetHostTriple.cmake from the old environment names (which we wanted to
move away from) to newer, normalized ones. This also requires updating
all tests to use the new systems names in constraints.
Differential Revision: https://reviews.llvm.org/D47381
llvm-svn: 339307
Summary:
This particular map is hardly ever queried and has a phased usage pattern (insert,
iterate, query, insert, iterate) so it's a good candidate for a sorted vector and
std::lower_bound.
This significantly reduces the run time of runTargetDesc() in some circumstances.
One llvm-tblgen invocation in my build improves the time spent in runTargetDesc()
from 9.86s down to 0.80s (~92%) without changing the output. The same invocation
also has 2GB less allocation churn.
Reviewers: bogner, rtereshin, aditya_nandakumar, volkan
Reviewed By: rtereshin
Subscribers: mgrang, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D50272
llvm-svn: 339208
https://reviews.llvm.org/D50283
reviewed by bogner
This patch refactors FileCheck's implementation into support so it can
be used from C++ in other places (Unit tests).
llvm-svn: 339192
This test passes on Windows when using Python 3 but fails when using Python 2, so it needs more investigation before it can be enabled as the bots use Python 2.
llvm-svn: 339184
Summary:
In Python2 'unicode' is a distinct type from 'str', but in Python3 'unicode' does not exist and instead all 'str' objects are Unicode string. This change updates the logic in the test logging for lit to correctly process each of the types, and more importantly, to not just fail in Python3.
This change also reverses the use of quotes in several of the cfg files. By using '""' we are guaranteeing that the resulting path will work correctly on Windows while "''" only works correctly sometimes. This also fixes one of the failing tests.
Reviewers: asmith, zturner
Subscribers: stella.stamenova, delcypher, llvm-commits
Differential Revision: https://reviews.llvm.org/D50397
llvm-svn: 339179
Summary:
The problem here is that on windows double quotes are used for paths (usually) while single quotes are not. This is not generally a problem for the tests because the lit infrastructure tends to treat both the same. One (and possibly only) exception is when some tests are run in an external shell such as some of the shtest-format tests. In this case on windows the path to python was not created correctly because it had single quotes and the test failed.
This same test is already failing with python 3 which is why our testing missed the new failure. This patch will take care of the immediate failure with python 2 and I'll send a follow up for the python 3 failure.
Reviewers: asmith, zturner
Subscribers: delcypher, llvm-commits
Differential Revision: https://reviews.llvm.org/D50373
llvm-svn: 339091
Summary:
The issue with the python path is that the path to python on Windows can contain spaces. To make the tests always work, the path to python needs to be surrounded by quotes.
This change updates several configuration files which specify the path to python as a substitution and also remove quotes from existing tests.
Reviewers: asmith, zturner, alexshap, jakehehrlich
Reviewed By: zturner, alexshap, jakehehrlich
Subscribers: mehdi_amini, nemanjai, eraman, kbarton, jakehehrlich, steven_wu, dexonsmith, stella.stamenova, delcypher, llvm-commits
Differential Revision: https://reviews.llvm.org/D50206
llvm-svn: 339073
The DAG combiner logic to simplify AND masks in shift counts is invalid.
While it is true that the SystemZ shift instructions ignore all but the
low 6 bits of the shift count, it is still invalid to simplify the AND
masks while the DAG still uses the standard shift operators (which are
*not* defined to match the SystemZ instruction behavior).
Instead, this patch performs equivalent operations during instruction
selection. For completely removing the AND, this now happens via
additional DAG match patterns implemented by a multi-alternative
PatFrags. For simplifying a 32-bit AND to a 16-bit AND, the existing DAG
patterns were already mostly OK, they just needed an output XForm to
actually truncate the immediate value.
Unfortunately, the latter change also exposed a bug in TableGen: it
seems XForms are currently only handled correctly for direct operands of
the outermost operation node. This patch also fixes that bug by simply
recurring through the whole pattern. This should be NFC for all other
targets.
Differential Revision: https://reviews.llvm.org/D50096
llvm-svn: 338521
Summary:
The VS compiler (on Windows) has a bug which results in fieldFromInstruction being optimized out in some circumstances. This only happens in *release no debug info* builds that have assertions *turned off* - in all other situations the function is not inlined, so the functionality is correct. All of the bots have assertions turned on, so this path is not regularly tested. The workaround is to not inline the function on Windows - if the bug is fixed in a later release of the VS compiler, the noinline specification can be removed.
The test that consistently reproduces this is Lanai v11.txt test.
Reviewers: asmith, labath, zturner
Subscribers: dblaikie, stella.stamenova, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D49753
llvm-svn: 337942
The llvm::Optional data formatter needs to look through the `Storage`
container if it's present.
Before:
220 if (Op && Op->getOp() != dwarf::DW_OP_LLVM_fragment)
-> 221 HasComplexExpression = true;
222
223 // If the register can only be described by a complex expression (i.e.,
224 // multiple subregisters) it doesn't safely compose with another complex
Target 0: (llc) stopped.
(lldb) p Op
(llvm::Optional<llvm::DIExpression::ExprOperand>) $0 = None
After:
(lldb) p Op
(llvm::Optional<llvm::DIExpression::ExprOperand>) $0 =
(llvm::DIExpression::ExprOperand) storage = {
Op = 0x000000010603d460
}
llvm-svn: 337752
Don't try to generate large PIC code for non-ELF targets. Neither COFF
nor MachO have relocations for large position independent code, and
users have been using "large PIC" code models to JIT 64-bit code for a
while now. With this change, if they are generating ELF code, their
JITed code will truly be PIC, but if they target MachO or COFF, it will
contain 64-bit immediates that directly reference external symbols. For
a JIT, that's perfectly fine.
llvm-svn: 337740
These two tests are operating on the same test suite, which causes
them to be racy about writing temporary files and can cause spurious
failures. Merge them into one test to avoid the issue.
llvm-svn: 337718
A DAG-NOT-DAG is a CHECK-DAG group, X, followed by a CHECK-NOT group,
N, followed by a CHECK-DAG group, Y. Let y be the initial directive
of Y. This patch makes the following changes to the behavior:
1. Directives in N can no longer match within part of Y's match
range just because y happens not to be the earliest match from
Y. Specifically, this patch withdraws N's search range end
from y's match range start to Y's match range start.
2. y can no longer match within X's match range, where a y match
produced a reordering complaint, which is thus no longer
possible. Specifically, this patch withdraws y's search range
start from X's permitted range start to X's match range end,
which was already the search range start for other members of
Y.
Both of these changes can only increase the number of test passes: #1
constrains the ability of CHECK-NOTs to match, and #2 expands the
ability of CHECK-DAGs to match without complaints.
These changes are based on discussions at:
<http://lists.llvm.org/pipermail/llvm-dev/2018-May/123550.html>
<https://reviews.llvm.org/D47106>
which conclude that:
1. These changes simplify the FileCheck conceptual model. First,
it makes search ranges for DAG-NOT-DAG more consistent with
other cases. Second, it was confusing that y was treated
differently from the rest of Y.
2. These changes add theoretical use cases for DAG-NOT-DAG that
had no obvious means to be expressed otherwise. We can justify
the first half of this assertion with the observation that
these changes can only increase the number of test passes.
3. Reordering detection for DAG-NOT-DAG had no obvious real
benefit.
We don't have evidence from real uses cases to help us debate
conclusions #2 and #3, but #1 at least seems intuitive.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D48986
llvm-svn: 337605
This is very clearly not very good, and is very partial.
But this is better than nothing at all, and shouldn't
hurt those who don't need it.
If there are others interested in this functionality,
it will be great to further improve this.
{F6253091}
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D47080
llvm-svn: 337415
Function `expandCheckImmOperand` should always check if the input machine
instruction is passed by reference before calling method `getOperand()` on it.
Found while working on a patch that relies on `expandCheckImmOperand` to expand
a scheduling predicate.
llvm-svn: 337294
Currently, any attempt to define a PatFrag involving any floating-point
only (or vector only) node causes a hard assertion failure in TableGen
if the current target does not have any floating-point (or vector)
types.
This is annoying if you want to provide convenience fragments in common
code (e.g. include/llvm/Target/TargetSelectionDAG.td) that is parsed on
all platforms, including those that miss such types.
But really, there's no reason not accept this when parsing the fragment
-- of course it would be an error for such a target to actually *use*
such a fragment anywhere, but as long as it doesn't, I think TableGen
shouldn't error out.
The immediate cause of the assertion failure is the test inside the
ValidateOnExit destructor. This patch simply disables that check while
infering types during parsing of pattern fragments (only).
Reviewed By: hfinkel, kparzysz
Differential Revision: https://reviews.llvm.org/D48887
llvm-svn: 337023
isSubsetOf() could be very slow if the hierarchy of the RegisterClasses
of the target is very complicated.
This is mainly caused by the fact that isSubset() is called
multiple times over the same SuperClass of a register class
if this ends up being the super class of a register class
from multiple paths.
Differential Revision: https://reviews.llvm.org/D49124
llvm-svn: 337020
This patch adds support for AArch64 to cfi-verify.
This required three changes to cfi-verify. First, it generalizes checking if an instruction is a trap by adding a new isTrap flag to TableGen (and defining it for x86 and AArch64). Second, the code that ensures that the operand register is not clobbered between the CFI check and the indirect call needs to allow a single dereference (in x86 this happens as part of the jump instruction). Third, we needed to ensure that return instructions are not counted as indirect branches. Technically, returns are indirect branches and can be covered by CFI, but LLVM's forward-edge CFI does not protect them, and x86 does not consider them, so we keep that behavior.
In addition, we had to improve AArch64's code to evaluate the branch target of a MCInst to handle calls where the destination is not the first operand (which it often is not).
Differential Revision: https://reviews.llvm.org/D48836
llvm-svn: 337007
A TableGen instruction record usually contains a DAG pattern that will
describe the SelectionDAG operation that can be implemented by this
instruction. However, there will be cases where several different DAG
patterns can all be implemented by the same instruction. The way to
represent this today is to write additional patterns in the Pattern
(or usually Pat) class that map those extra DAG patterns to the
instruction. This usually also works fine.
However, I've noticed cases where the current setup seems to require
quite a bit of extra (and duplicated) text in the target .td files.
For example, in the SystemZ back-end, there are quite a number of
instructions that can implement an "add-with-overflow" operation.
The same instructions also need to be used to implement just plain
addition (simply ignoring the extra overflow output). The current
solution requires creating extra Pat pattern for every instruction,
duplicating the information about which particular add operands
map best to which particular instruction.
This patch enhances TableGen to support a new PatFrags class, which
can be used to encapsulate multiple alternative patterns that may
all match to the same instruction. It operates the same way as the
existing PatFrag class, except that it accepts a list of DAG patterns
to match instead of just a single one. As an example, we can now define
a PatFrags to match either an "add-with-overflow" or a regular add
operation:
def z_sadd : PatFrags<(ops node:$src1, node:$src2),
[(z_saddo node:$src1, node:$src2),
(add node:$src1, node:$src2)]>;
and then use this in the add instruction pattern:
defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
These SystemZ target changes are implemented here as well.
Note that PatFrag is now defined as a subclass of PatFrags, which
means that some users of internals of PatFrag need to be updated.
(E.g. instead of using PatFrag.Fragment you now need to use
!head(PatFrag.Fragments).)
The implementation is based on the following main ideas:
- InlinePatternFragments may now replace each original pattern
with several result patterns, not just one.
- parseInstructionPattern delays calling InlinePatternFragments
and InferAllTypes. Instead, it extracts a single DAG match
pattern from the main instruction pattern.
- Processing of the DAG match pattern part of the main instruction
pattern now shares most code with processing match patterns from
the Pattern class.
- Direct use of main instruction patterns in InferFromPattern and
EmitResultInstructionAsOperand is removed; everything now operates
solely on DAG match patterns.
Reviewed by: hfinkel
Differential Revision: https://reviews.llvm.org/D48545
llvm-svn: 336999
begin label emitted for some routines with personality functions and
such.
Without this, we don't even recognize such functions as appearing in the
output and so don't attach any assertions to them. Happy to tweak this
or improve it if folks w/ deeper knowledge of the asm sequences that
show up here want.
llvm-svn: 336987
-v prints all directive pattern matches.
-vv additionally prints info that might be noise to users but that can
be helpful to FileCheck developers.
To maximize code reuse and to make diagnostics more consistent, this
patch also adjusts and extends some of the existing diagnostics.
CHECK-NOT failures now report variables uses. Many more diagnostics
now report the check prefix and kind of directive.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D47114
llvm-svn: 336967
That is, make CHECK-DAG skip matches that overlap the matches of any
preceding consecutive CHECK-DAG directives. This change makes
CHECK-DAG more consistent with other directives, and there is evidence
it makes CHECK-DAG more intuitive and less error-prone. See the RFC
discussion starting at:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123010.html
Moreover, this behavior enables CHECK-DAG groups for unordered,
non-unique strings or patterns. For example, it is useful for
verifying output or logs from a parallel program, such as the OpenMP
runtime.
This patch also implements the command-line option
-allow-deprecated-dag-overlap, which reverts CHECK-DAG to the old
overlapping behavior. This option should not be used in new tests.
It is meant only for the existing tests that are broken by this change
and that need time to update.
See the following bugzilla issue for tracking of such tests:
https://bugs.llvm.org/show_bug.cgi?id=37532
Patches to add -allow-deprecated-dag-overlap to those tests will
follow immediately.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D47106
llvm-svn: 336847
That is, make CHECK-DAG skip matches that overlap the matches of any
preceding consecutive CHECK-DAG directives. This change makes
CHECK-DAG more consistent with other directives, and there is evidence
it makes CHECK-DAG more intuitive and less error-prone. See the RFC
discussion starting at:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123010.html
Moreover, this behavior enables CHECK-DAG groups for unordered,
non-unique strings or patterns. For example, it is useful for
verifying output or logs from a parallel program, such as the OpenMP
runtime.
This patch also implements the command-line option
-allow-deprecated-dag-overlap, which reverts CHECK-DAG to the old
overlapping behavior. This option should not be used in new tests.
It is meant only for the existing tests that are broken by this change
and that need time to update.
See the following bugzilla issue for tracking of such tests:
https://bugs.llvm.org/show_bug.cgi?id=37532
Patches to add -allow-deprecated-dag-overlap to those tests will
follow immediately.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D47106
llvm-svn: 336830
The aim of this backend is to output everything TableGen knows about
the record set, similarly to the default -print-records backend. But
where -print-records produces output in TableGen's input syntax
(convenient for humans to read), this backend produces it as
structured JSON data, which is convenient for loading into standard
scripting languages such as Python, in order to extract information
from the data set in an automated way.
The output data contains a JSON representation of the variable
definitions in output 'def' records, and a few pieces of metadata such
as which of those definitions are tagged with the 'field' prefix and
which defs are derived from which classes. It doesn't dump out
absolutely every piece of knowledge it _could_ produce, such as type
information and complicated arithmetic operator nodes in abstract
superclasses; the main aim is to allow consumers of this JSON dump to
essentially act as new backends, and backends don't generally need to
depend on that kind of data.
The new backend is implemented as an EmitJSON() function similar to
all of llvm-tblgen's other EmitFoo functions, except that it lives in
lib/TableGen instead of utils/TableGen on the basis that I'm expecting
to add it to clang-tblgen too in a future patch.
To test it, I've written a Python script that loads the JSON output
and tests properties of it based on comments in the .td source - more
or less like FileCheck, except that the CHECK: lines have Python
expressions after them instead of textual pattern matches.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: arichardson, labath, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D46054
llvm-svn: 336771
The vast number of added instructions for SVE causes TableGen to fail with an assertion:
Assertion `Delta < 65536U && "disassembler decoding table too large!"'
This patch increases the number of supported decoder fix-ups.
Reviewers: dmgreen, stoklund, petpav01
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D48937
llvm-svn: 336334