Instcombine gets some, but not all, of these cases via
it's internal reassociation transforms. It fails in
all cases with vector types.
llvm-svn: 339168
This is the second patch of the series which intends to enable jump threading for an inlined method whose return type is std::pair<int, bool> or std::pair<bool, int>.
The first patch is https://reviews.llvm.org/rL338485.
This patch handles code sequences that merges two values using `shl` and `or`, then extracts one value using `and`.
Differential Revision: https://reviews.llvm.org/D49981
llvm-svn: 338817
This adds the NAN checks suggested in PR37776:
https://bugs.llvm.org/show_bug.cgi?id=37776
If both operands to maxnum are NAN, that should get constant folded, so we don't
have to handle that case. This is the same assumption as other FP ops in this
function. Returning 'false' is always conservatively correct.
Copying from the bug report:
Currently, we have this for "when is cannotBeOrderedLessThanZero
(mustBePositiveOrNaN) true for maxnum":
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | x |
------------------------
|NaN | x | x | x |
------------------------
The cases with (Neg & NaN) are wrong. We should have:
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | |
------------------------
|NaN | x | | x |
------------------------
Differential Revision: https://reviews.llvm.org/D50081
llvm-svn: 338716
This patch intends to enable jump threading when a method whose return type is std::pair<int, bool> or std::pair<bool, int> is inlined.
For example, jump threading does not happen for the if statement in func.
std::pair<int, bool> callee(int v) {
int a = dummy(v);
if (a) return std::make_pair(dummy(v), true);
else return std::make_pair(v, v < 0);
}
int func(int v) {
std::pair<int, bool> rc = callee(v);
if (rc.second) {
// do something
}
SROA executed before the method inlining replaces std::pair by i64 without splitting in both callee and func since at this point no access to the individual fields is seen to SROA.
After inlining, jump threading fails to identify that the incoming value is a constant due to additional instructions (like or, and, trunc).
This series of patch add patterns in InstructionSimplify to fold extraction of members of std::pair. To help jump threading, actually we need to optimize the code sequence spanning multiple BBs.
These patches does not handle phi by itself, but these additional patterns help NewGVN pass, which calls instsimplify to check opportunities for simplifying instructions over phi, apply phi-of-ops optimization to result in successful jump threading.
SimplifyDemandedBits in InstCombine, can do more general optimization but this patch aims to provide opportunities for other optimizers by supporting a simple but common case in InstSimplify.
This first patch in the series handles code sequences that merges two values using shl and or and then extracts one value using lshr.
Differential Revision: https://reviews.llvm.org/D48828
llvm-svn: 338485
This commit includes unit tests for D48828, which enhances InstSimplify to enable jump threading with a method whose return type is std::pair<int, bool> or std::pair<bool, int>.
I am going to commit the actual transformation later.
llvm-svn: 338107
This fold is repeated/misplaced in instcombine, but I'm
not sure if it's safe to remove that yet because some
other folds appear to be asserting that the transform
has occurred within instcombine itself.
This isn't the best fix for PR37776, but it probably
hides the bug with the given code example:
https://bugs.llvm.org/show_bug.cgi?id=37776
We have another test to demonstrate the more general bug.
llvm-svn: 337127
This isn't the best fix for PR37776, but it probably
hides the bug with the given code example:
https://bugs.llvm.org/show_bug.cgi?id=37776
We have another test to demonstrate the more general
bug.
llvm-svn: 337126
isKnownNegation() is currently proposed as part of D48754,
but it could be used to make InstSimplify stronger independently
of any abs() improvements.
llvm-svn: 336822
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
For both operands are unsigned, the following optimizations are valid, and missing:
1. X > Y && X != 0 --> X > Y
2. X > Y || X != 0 --> X != 0
3. X <= Y || X != 0 --> true
4. X <= Y || X == 0 --> X <= Y
5. X > Y && X == 0 --> false
unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
should fold to x > y, but I found we haven't done it right now.
besides, unsigned foo(unsigned x, unsigned y) { return x < y && y != 0; }
Has been folded to x < y, so there may be a bug.
Patch by: Li Jia He!
Differential Revision: https://reviews.llvm.org/D47922
llvm-svn: 335129
These are the baseline tests for the functional change in D47922.
Patch by Li Jia He!
Differential Revision: https://reviews.llvm.org/D48000
llvm-svn: 335128
Summary:
`%ret = add nuw i8 %x, C`
From [[ https://llvm.org/docs/LangRef.html#add-instruction | langref ]]:
nuw and nsw stand for “No Unsigned Wrap” and “No Signed Wrap”,
respectively. If the nuw and/or nsw keywords are present,
the result value of the add is a poison value if unsigned
and/or signed overflow, respectively, occurs.
So if `C` is `-1`, `%x` can only be `0`, and the result is always `-1`.
I'm not sure we want to use `KnownBits`/`LVI` here, because there is
exactly one possible value (all bits set, `-1`), so some other pass
should take care of replacing the known-all-ones with constant `-1`.
The `test/Transforms/InstCombine/set-lowbits-mask-canonicalize.ll` change *is* confusing.
What happening is, before this: (omitting `nuw` for simplicity)
1. First, InstCombine D47428/rL334127 folds `shl i32 1, %NBits`) to `shl nuw i32 -1, %NBits`
2. Then, InstSimplify D47883/rL334222 folds `shl nuw i32 -1, %NBits` to `-1`,
3. `-1` is inverted to `0`.
But now:
1. *This* InstSimplify fold `%ret = add nuw i32 %setbit, -1` -> `-1` happens first,
before InstCombine D47428/rL334127 fold could happen.
Thus we now end up with the opposite constant,
and it is all good: https://rise4fun.com/Alive/OA9https://rise4fun.com/Alive/sldC
Was mentioned in D47428 review.
Follow-up for D47883.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47908
llvm-svn: 334298
%ret = add nuw i8 %x, C
From langref:
nuw and nsw stand for “No Unsigned Wrap” and “No Signed Wrap”,
respectively. If the nuw and/or nsw keywords are present,
the result value of the add is a poison value if unsigned
and/or signed overflow, respectively, occurs.
So if C is -1, %x can only be 0, and the result is always -1.
https://rise4fun.com/Alive/sldC
Was mentioned in D47428 review.
llvm-svn: 334236
Summary:
`%r = shl nuw i8 C, %x`
As per langref:
```
If the nuw keyword is present, then the shift produces
a poison value if it shifts out any non-zero bits.
```
Thus, if the sign bit is set on `C`, then `%x` can only be `0`,
which means that `%r` can only be `C`.
Or in other words, set sign bit means that the signed value
is negative, so the constant is `<= 0`.
https://rise4fun.com/Alive/WMkhttps://rise4fun.com/Alive/udv
Was mentioned in D47428 review.
We already handle the `0` constant, https://godbolt.org/g/UZq1sJ, so this only handles negative constants.
Could use computeKnownBits() / LazyValueInfo,
but the cost-benefit analysis (https://reviews.llvm.org/D47891)
suggests it isn't worth it.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47883
llvm-svn: 334222
%r = shl nuw i8 C, %x
As per langref: If the nuw keyword is present, then the shift produces
a poison value if it shifts out any non-zero bits.
Thus, if the sign bit is set on C, then %x can only be 0,
which means that %r can only be C.
https://rise4fun.com/Alive/WMk
Was mentioned in D47428 review.
llvm-svn: 334200
We already do this for min/max (see the blob above the diff),
so we should do the same for abs/nabs.
A sign-bit check (<s 0) is used as a predicate for other IR
transforms and it's likely the best for codegen.
This might solve the motivating cases for D47037 and D47041,
but I think those patches still make sense. We can't guarantee
this canonicalization if the icmp has more than one use.
Differential Revision: https://reviews.llvm.org/D47076
llvm-svn: 332819
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841