Commit Graph

26 Commits

Author SHA1 Message Date
Quentin Colombet b926bdac4c Reapply r263460: [SpillPlacement] Fix a quadratic behavior in spill placement.
Using Chandler's words from r265331:
This commit was greatly exacerbating PR17409 and effectively regressed
build time for lot of (very large) code when compiled with ASan or MSan.

PR17409 is fixed by r269249, so this is fine to reapply r263460.

Original commit message:
The bad behavior happens when we have a function with a long linear
chain of basic blocks, and have a live range spanning most of this
chain, but with very few uses.

Let say we have only 2 uses.

The Hopfield network is only seeded with two active blocks where the
uses are, and each iteration of the outer loop in
`RAGreedy::growRegion()` only adds two new nodes to the network due to
the completely linear shape of the CFG.  Meanwhile,
`SpillPlacer->iterate()` visits the whole set of discovered nodes, which
adds up to a quadratic algorithm.

This is an historical accident effect from r129188.

When the Hopfield network is expanding, most of the action is happening
on the frontier where new nodes are being added. The internal nodes in
the network are not likely to be flip-flopping much, or they will at
least settle down very quickly. This means that while
`SpillPlacer->iterate()` is recomputing all the nodes in the network, it
is probably only the two frontier nodes that are changing their output.

Instead of recomputing the whole network on each iteration, we can
maintain a SparseSet of nodes that need to be updated:

- `SpillPlacement::activate()` adds the node to the todo list.
- When a node changes value (i.e., `update()` returns true), its
  neighbors are added to the todo list.
- `SpillPlacement::iterate()` only updates the nodes in the list.

The result of Hopfield iterations is not necessarily exact. It should
converge to a local minimum, but there is no guarantee that it will find
a global minimum. It is possible that updating nodes in a different
order will cause us to switch to a different local minimum. In other
words, this is not NFC, but although I saw a few runtime improvements
and regressions when I benchmarked this change, those were side effects
and actually the performance change is in the noise as expected.

Huge thanks to Jakob Stoklund Olesen <stoklund@2pi.dk> for his
feedbacks, guidance and time for the review.

llvm-svn: 270149
2016-05-19 22:40:37 +00:00
Chandler Carruth 613eec8210 Revert r263460: [SpillPlacement] Fix a quadratic behavior in spill placement.
That commit looks wonderful and awesome. Sadly, it greatly exacerbates
PR17409 and effectively regresses build time for a lot of (very large)
code when compiled with ASan or MSan.

We thought this could be fixed forward by landing D15302 which at last
fixes that PR, but some issues were discovered and it looks like that
got reverted, so reverting this as well temporarily. As soon as the fix
for PR17409 lands and sticks, we should re-land this patch as it won't
trigger more significant test cases hitting that bug.

Many thanks to Quentin and Wei here as they're doing all the awesome
hard work!!!

llvm-svn: 265331
2016-04-04 18:57:50 +00:00
Quentin Colombet 40ce25b68b [SpillPlacement] Fix a quadratic behavior in spill placement.
The bad behavior happens when we have a function with a long linear chain of
basic blocks, and have a live range spanning most of this chain, but with very
few uses.
Let say we have only 2 uses.
The Hopfield network is only seeded with two active blocks where the uses are,
and each iteration of the outer loop in `RAGreedy::growRegion()` only adds two
new nodes to the network due to the completely linear shape of the CFG.
Meanwhile, `SpillPlacer->iterate()` visits the whole set of discovered nodes,
which adds up to a quadratic algorithm.

This is an historical accident effect from r129188.

When the Hopfield network is expanding, most of the action is happening on the
frontier where new nodes are being added. The internal nodes in the network are
not likely to be flip-flopping much, or they will at least settle down very
quickly. This means that while `SpillPlacer->iterate()` is recomputing all the
nodes in the network, it is probably only the two frontier nodes that are
changing their output.

Instead of recomputing the whole network on each iteration, we can maintain a
SparseSet of nodes that need to be updated:

- `SpillPlacement::activate()` adds the node to the todo list.
- When a node changes value (i.e., `update()` returns true), its neighbors are
  added to the todo list.
- `SpillPlacement::iterate()` only updates the nodes in the list.

The result of Hopfield iterations is not necessarily exact. It should converge
to a local minimum, but there is no guarantee that it will find a global
minimum. It is possible that updating nodes in a different order will cause us
to switch to a different local minimum. In other words, this is not NFC, but
although I saw a few runtime improvements and regressions when I benchmarked
this change, those were side effects and actually the performance change is in
the noise as expected.

Huge thanks to Jakob Stoklund Olesen <stoklund@2pi.dk> for his feedbacks,
guidance and time for the review.

llvm-svn: 263460
2016-03-14 18:21:25 +00:00
Alexander Kornienko f817c1cb9a Use 'override/final' instead of 'virtual' for overridden methods
The patch is generated using clang-tidy misc-use-override check.

This command was used:

  tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
    -checks='-*,misc-use-override' -header-filter='llvm|clang' \
    -j=32 -fix -format

http://reviews.llvm.org/D8925

llvm-svn: 234679
2015-04-11 02:11:45 +00:00
Chandler Carruth 7425c8c279 Fix the threshold added in r186434 (a re-apply of r185393) and updaated
to be a ManagedStatic in r218163 to not be a global variable written and
read to from within the innards of SpillPlacement.

This will fix a really scary race condition for anyone that has two
copies of LLVM running spill placement concurrently. Yikes!

This will also fix a really significant compile time hit that r218163
caused because the spill placement threshold read is actually in the
*very* hot path of this code. The memory fence on each read was showing
up as huge compile time regressions when spilling is responsible for
most of the compile time. For example, optimizing sanitized code showed
over 50% compile time regressions here. =/

llvm-svn: 218921
2014-10-02 22:23:14 +00:00
Benjamin Kramer a7c40ef022 Canonicalize header guards into a common format.
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)

Changes made by clang-tidy with minor tweaks.

llvm-svn: 215558
2014-08-13 16:26:38 +00:00
Hans Wennborg 12b996da88 Increase the size of SpillPlacement::BlockFrequencies.
This SmallVector's median size during a Clang build was 7.

llvm-svn: 215338
2014-08-11 02:21:30 +00:00
Craig Topper ada0857679 [C++11] More 'nullptr' conversion. In some cases just using a boolean check instead of comparing to nullptr.
llvm-svn: 206356
2014-04-16 04:21:27 +00:00
Craig Topper 4584cd54e3 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 203220
2014-03-07 09:26:03 +00:00
Michael Gottesman 092647b37a [block-freq] Store MBFI as a field on SpillPlacement so we can access it to get the entry frequency while processing data.
llvm-svn: 197291
2013-12-14 00:25:47 +00:00
Benjamin Kramer 079b96e6f7 Revert "Give internal classes hidden visibility."
It works with clang, but GCC has different rules so we can't make all of those
hidden. This reverts commit r190534.

llvm-svn: 190536
2013-09-11 18:05:11 +00:00
Benjamin Kramer 6a44af3629 Give internal classes hidden visibility.
Worth 100k on a linux/x86_64 Release+Asserts clang.

llvm-svn: 190534
2013-09-11 17:42:27 +00:00
Jakob Stoklund Olesen efeb3a1969 Remove floats from live range splitting costs.
These floats all represented block frequencies anyway, so just use the
BlockFrequency class directly.

Some floating point computations remain in tryLocalSplit(). They are
estimating spill weights which are still floats.

llvm-svn: 186435
2013-07-16 18:26:18 +00:00
Jakob Stoklund Olesen c5454ff046 Reapply r185393.
Original commit message:

Remove floating point computations from SpillPlacement.cpp.

Patch by Benjamin Kramer!

Use the BlockFrequency class instead of floats in the Hopfield network
computations. This rescales the node Bias field from a [-2;2] float
range to two block frequencies BiasN and BiasP pulling in opposite
directions. This construct has a more predictable behavior when block
frequencies saturate.

The per-node scaling factors are no longer necessary, assuming the block
frequencies around a bundle are consistent.

This patch can cause the register allocator to make different spilling
decisions. The differences should be small.

llvm-svn: 186434
2013-07-16 18:26:15 +00:00
Jakob Stoklund Olesen 13be6bfb60 Revert (most of) r185393 and r185395.
"Remove floating point computations form SpillPlacement.cpp."

These commits caused test failures in lencod on clang-native-arm-lnt.

I suspect these changes are only exposing an existing issue, but
reverting anyway to keep the bots passing while we investigate.

llvm-svn: 185447
2013-07-02 17:31:58 +00:00
Jakob Stoklund Olesen 55daed27b7 Remove floating point computations form SpillPlacement.cpp.
Patch by Benjamin Kramer!

Use the BlockFrequency class instead of floats in the Hopfield network
computations. This rescales the node Bias field from a [-2;2] float
range to two block frequencies BiasN and BiasP pulling in opposite
directions. This construct has a more predictable behavior when block
frequencies saturate.

The per-node scaling factors are no longer necessary, assuming the block
frequencies around a bundle are consistent.

This patch can cause the register allocator to make different spilling
decisions. The differences should be small.

llvm-svn: 185393
2013-07-01 23:19:39 +00:00
Jakob Stoklund Olesen 869545203b Be more conservative when forming compact regions.
Apply twice the negative bias on transparent blocks when computing the
compact regions. This excludes loop backedges from the region when only
one of the loop blocks uses the register.

Previously, we would include the backedge in the region if the loop
preheader and the loop latch both used the register, but the loop header
didn't.

When both the header and latch blocks use the register, we still keep it
live on the backedge.

llvm-svn: 136832
2011-08-03 23:09:38 +00:00
Jakob Stoklund Olesen d2a7d1ed97 Extend the SpillPlacement interface with two new features.
The PrefBoth constraint is used for blocks that ideally want a live-in
value both on the stack and in a register. This would be used by a block
that has a use before interference forces a spill.

Secondly, add the ChangesValue flag to BlockConstraint. This tells
SpillPlacement if a live-in value on the stack can be reused as a
live-out stack value for free. If the block redefines the virtual
register, a spill would be required for that.

This extra information will be used by SpillPlacement to more accurately
calculate spill costs when a value can exist both on the stack and in a
register.

The simplest example is a basic block that reads the virtual register,
but doesn't change its value. Spilling around such a block requires a
reload, but no spill in the block.

The spiller already knows this, but the spill placer doesn't. That can
sometimes lead to suboptimal regions.

llvm-svn: 136731
2011-08-02 21:53:03 +00:00
Jakob Stoklund Olesen 0ab5d0ee5b Add a simple method for marking blocks with interference in and out.
This method matches addLinks - All the listed blocks are considered to
have interference, so they add a negative bias to their bundles.

This could also be done by addConstraints, but that requires building a
separate BlockConstraint array.

llvm-svn: 135844
2011-07-23 03:10:19 +00:00
Jakob Stoklund Olesen ed47ed4e80 Build the Hopfield network incrementally when splitting global live ranges.
It is common for large live ranges to have few basic blocks with register uses
and many live-through blocks without any uses. This approach grows the Hopfield
network incrementally around the use blocks, completely avoiding checking
interference for some through blocks.

llvm-svn: 129188
2011-04-09 02:59:09 +00:00
Jakob Stoklund Olesen 6d2bbc1c20 Extract SpillPlacement::addLinks for handling the special transparent blocks.
llvm-svn: 129079
2011-04-07 17:27:46 +00:00
Jakob Stoklund Olesen 6895b87dfe Keep track of the number of positively biased nodes when adding constraints.
If there are no positive nodes, the algorithm can be aborted early.

llvm-svn: 129021
2011-04-06 19:14:00 +00:00
Jakob Stoklund Olesen 36b5d8a698 Break the spill placement algorithm into three parts: prepare, addConstraints, and finish.
This will allow us to abort the algorithm early if it is determined to be futile.

llvm-svn: 129020
2011-04-06 19:13:57 +00:00
Jakob Stoklund Olesen c332e727b4 Precompute block frequencies, pow() isn't free.
llvm-svn: 126975
2011-03-04 00:58:40 +00:00
Jakob Stoklund Olesen 267f6c1ab2 Add RAGreedy methods for splitting live ranges around regions.
Analyze the live range's behavior entering and leaving basic blocks. Compute an
interference pattern for each allocation candidate, and use SpillPlacement to
find an optimal region where that register can be live.

This code is still not enabled.

llvm-svn: 123774
2011-01-18 21:13:27 +00:00
Jakob Stoklund Olesen 8e236eac74 Add the SpillPlacement analysis pass.
This pass precomputes CFG block frequency information that can be used by the
register allocator to find optimal spill code placement.

Given an interference pattern, placeSpills() will compute which basic blocks
should have the current variable enter or exit in a register, and which blocks
prefer the stack.

The algorithm is ready to consume block frequencies from profiling data, but for
now it gets by with the static estimates used for spill weights.

This is a work in progress and still not hooked up to RegAllocGreedy.

llvm-svn: 122938
2011-01-06 01:21:53 +00:00