Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
More generally, this permits a template to be specialized in any scope in which
it could be defined, so this also supersedes DR44 and DR374 (the latter of
which we previously only implemented in C++11 mode onwards due to unclarity as
to whether it was a DR).
llvm-svn: 327705
template parameter that is an expanded parameter pack, only substitute into the
current slice, not the entire pack.
This reduces the checking of N template template arguments for an expanded
parameter pack containing N parameters from quadratic time to linear time in
the length of the pack. This is important because one (and possibly the only?)
general technique for splitting a template parameter pack in linear time
depends on doing this.
llvm-svn: 326973
So I wrote a clang-tidy check to lint out redundant `isa`, `cast`, and
`dyn_cast`s for fun. This is a portion of what it found for clang; I
plan to do similar cleanups in LLVM and other subprojects when I find
time.
Because of the volume of changes, I explicitly avoided making any change
that wasn't highly local and obviously correct to me (e.g. we still have
a number of foo(cast<Bar>(baz)) that I didn't touch, since overloading
is a thing and the cast<Bar> did actually change the type -- just up the
class hierarchy).
I also tried to leave the types we were cast<>ing to somewhere nearby,
in cases where it wasn't locally obvious what we were dealing with
before.
llvm-svn: 326416
Specifically, we would not properly parse these types within template arguments
(for non-type template parameters), and in tentative parses. Fixing both of
these essentially requires that we parse deduced template specialization types
as types in all contexts, even in template argument lists -- in particular,
tentative parsing may look ahead and annotate a deduced template specialization
type before we figure out that we're actually supposed to treat the tokens as a
template-name. We deal with this by simply permitting deduced template
specialization types when parsing template arguments, and converting them to
template template arguments.
llvm-svn: 326299
- reverts r321622, r321625, and r321626.
- the use of bit-fields is still resulting in warnings - even though we can use static-asserts to harden the code and ensure the bit-fields are wide enough. The bots still complain of warnings being seen.
- to silence the warnings requires specifying the bit-fields with the underlying enum type (as opposed to the enum type itself), which then requires lots of unnecessary static casts of each enumerator within DeclSpec to the underlying-type, which even though could be seen as implementation details, it does hamper readability - and given the additional litterings, makes me question the value of the change.
So in short - I give up (for now at least).
Sorry about the noise.
llvm-svn: 321628
- Since these enums are used as bit-fields - for the bit-fields to be interpreted as unsigned, the underlying type must be specified as unsigned.
Previous failed attempt - wherein I did not specify an underlying type - was the sum of:
https://reviews.llvm.org/rC321614https://reviews.llvm.org/rC321615
llvm-svn: 321622
- the enum changes to TypeSpecifierType are breaking some tests - and will require a more careful integration.
Sorry about rushing these changes - thought I could sneak them in prior to heading out for new years ;)
llvm-svn: 321616
This patch addresses a FIXME and has the template-parameter processing functions return a more derived common type NamedDecl (as opposed to a type needlessly higher up in the inheritance hierarchy : Decl).
llvm-svn: 321409
The standard correctly forbids various decl-specifiers that dont make sense on non-type template parameters - such as the extern in:
template<extern int> struct X;
This patch implements those restrictions (in a fashion similar to the corresponding checks on function parameters within ActOnParamDeclarator).
Credit goes to miyuki (Mikhail Maltsev) for drawing attention to this issue, authoring the initial versions of this patch, and supporting the effort to re-engineer it slightly. Thank you!
For details of how this patch evolved please see: https://reviews.llvm.org/D40705
llvm-svn: 321339
Summary:
This is so we can implement concepts per P0734R0. Relevant failing test
cases are disabled.
Reviewers: hubert.reinterpretcast, rsmith, saar.raz, nwilson
Reviewed By: saar.raz
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D40380
Patch by Changyu Li!
llvm-svn: 319992
This matches MSVC's behaviour, and we already do it for class templates
since r270897.
Differential revision: https://reviews.llvm.org/D40621
llvm-svn: 319386
This bug was found via self-build on lld, and worked around
here: https://reviews.llvm.org/rL316180
The issue is that the 'using' causes the lookup to pick up the
first decl. However, when setting inherited default parameters,
we only update 'forward', not 'backward'. SO, only the newest param
list has all the information about the default arguments.
This patch ensures that the list of parameters we look through checks
the newest decl's template parameter list so it doesn't miss a default.
Differential Revision: https://reviews.llvm.org/D39127
llvm-svn: 316405
In order to identify the copy deduction candidate, I considered two approaches:
- attempt to determine whether an implicit guide is a copy deduction candidate by checking certain properties of its subsituted parameter during overload-resolution.
- using one of the many bits (WillHaveBody) from FunctionDecl (that CXXDeductionGuideDecl inherits from) that are otherwise irrelevant for deduction guides
After some brittle gymnastics w the first strategy, I settled on the second, although to avoid confusion and to give that bit a better name, i turned it into a member of an anonymous union.
Given this identification 'bit', the tweak to overload resolution was a simple reordering of the deduction guide checks (in SemaOverload.cpp::isBetterOverloadCandidate), in-line with Jason Merrill's p0620r0 drafting which made it into the working paper. Concordant with that, I made sure the copy deduction candidate is always added.
References:
See https://bugs.llvm.org/show_bug.cgi?id=34970
See http://wg21.link/p0620r0
llvm-svn: 316292
When declaring an entity in the "purview" of a module, it's never a
redeclaration of an entity in the purview of a default module or in no module
("in the global module"). Don't consider those other declarations as possible
redeclaration targets if they're not visible, and reject any cases where we
pick a prior visible declaration that violates this rule.
This reinstates r315251 and r315256, reverted in r315309 and r315308
respectively, tweaked to avoid triggering a linkage calculation when declaring
implicit special members (this exposed our pre-existing issue with typedef
names for linkage changing the linkage of types whose linkage has already been
computed and cached in more cases). A testcase for that regression has been
added in r315366.
llvm-svn: 315379
When declaring an entity in the "purview" of a module, it's never a
redeclaration of an entity in the purview of a default module or in no module
("in the global module"). Don't consider those other declarations as possible
redeclaration targets if they're not visible, and reject any cases where we
pick a prior visible declaration that violates this rule.
llvm-svn: 315251
This patch relates to: https://reviews.llvm.org/D33666 This adds support
for template parameters to be passed to the address_space attribute.
The main goal is to add further flexibility to the attribute and allow
for it to be used easily with templates.
The main additions are a new type (DependentAddressSpaceType) alongside
its TypeLoc and its mangling. As well as the logic required to support
dependent address spaces which mainly resides in TreeTransform.h and
SemaType.cpp.
llvm-svn: 314649
When a static_assert fails, dig out a specific condition to diagnose,
using the same logic that we use to find the enable_if condition to
diagnose.
llvm-svn: 313315
Summary:
r306137 made dllimport pointers to member functions non-constant. This
is correct because a load must be executed to resolve any dllimported
data. However, r306137 did not account for the use of dllimport member
function pointers used as template arguments.
This change re-lands r306137 with a template instantiation fix.
This fixes PR33570.
Reviewers: rnk, majnemer
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D34714
llvm-svn: 307446
When enable_if disables a particular overload resolution candidate,
rummage through the enable_if condition to find the specific condition
that caused the failure. For example, if we have something like:
template<
typename Iter,
typename = std::enable_if_t<Random_access_iterator<Iter> &&
Comparable<Iterator_value_type<Iter>>>>
void mysort(Iter first, Iter last) {}
and we call "mysort" with "std::list<int>" iterators, we'll get a
diagnostic saying that the "Random_access_iterator<Iter>" requirement
failed. If we call "mysort" with
"std::vector<something_not_comparable>", we'll get a diagnostic saying
that the "Comparable<...>" requirement failed.
llvm-svn: 307196
definition or non-reference class type.
The crash occurs when there is a template parameter list in a class that
is missing the closing angle bracket followed by a definition of a
struct. For example:
class C0 {
public:
template<typename T, typename T1 = T // missing closing angle bracket
struct S0 {};
C0() : m(new S0<int>) {}
S0<int> *m;
};
This happens because the parsed struct is added to the scope of the
enclosing class without having its access specifier set, which results
in an assertion failure in SemaAccess.cpp later.
This commit fixes the crash by adding the parsed struct to the enclosing
file scope and marking structs as invalid if they are defined in
template parameter lists.
rdar://problem/31783961
rdar://problem/19570630
Differential Revision: https://reviews.llvm.org/D33606
llvm-svn: 306317
inferring based on the current module at the point of creation.
This should result in no functional change except when building a preprocessed
module (or more generally when using #pragma clang module begin/end to switch
module in the middle of a file), in which case it allows us to correctly track
the owning module for declarations. We can't map from FileID to module in the
preprocessed module case, since all modules would have the same FileID.
There are still a couple of remaining places that try to infer a module from a
source location; I'll clean those up in follow-up changes.
llvm-svn: 303322
When we parse a redefinition of an entity for which we have a hidden existing
declaration, make it visible in the current module instead of mapping the
current source location to its containing module.
llvm-svn: 302842
When an undeclared identifier in a context that requires a type is followed by
'<', only look for type templates when typo-correcting, tweak the diagnostic
text to say that a template name (not a type name) was undeclared, and parse
the template arguments when recovering from the error.
llvm-svn: 302732
The heuristic that we use here is:
* the left-hand side must be a simple identifier or a class member access
* the right-hand side must be '<' followed by either a '>' or by a type-id that
cannot be an expression (in particular, not followed by '(' or '{')
* there is a '>' token matching the '<' token
The second condition guarantees the expression would otherwise be ill-formed.
If we're confident that the user intended the name before the '<' to be
interpreted as a template, diagnose the fact that we didn't interpret it
that way, rather than diagnosing that the template arguments are not valid
expressions.
llvm-svn: 302615
This improves our behavior in a few ways:
* We now guarantee that if a member is marked as being a member
specialization, there will actually be a member specialization declaration
somewhere on its redeclaration chain. This fixes a crash in modules builds
where we would try to check that there was a visible declaration of the
member specialization and be surprised to not find any declaration of it at
all.
* We don't set the source location of the in-class declaration of the member
specialization to the out-of-line declaration's location until we have
actually finished merging them. This fixes some very silly looking
diagnostics, where we'd point a "previous declaration is here" note at the
same declaration we're complaining about. Ideally we wouldn't mess with the
prior declaration's location at all, but too much code assumes that the
first declaration of an entity is a reasonable thing to use as an indication
of where it was declared, and that's not really true for a member
specialization unless we fake it like this.
llvm-svn: 302596
This reverts an attempt to check that types match when matching a
dependently-typed non-type template parameter. (This comes up when matching the
parameters of a template template parameter against the parameters of a
template template argument.)
The matching rules here are murky at best. Our behavior after this revert is
definitely wrong for certain C++17 features (for 'auto' template parameter
types within the parameter list of a template template argument in particular),
but our behavior before this revert is wrong for some pre-existing testcases,
so reverting to our prior behavior seems like our best option.
llvm-svn: 300262
- also replace direct equality checks against the ConstantEvaluated enumerator with isConstantEvaluted(), in anticipation of adding finer granularity to the various ConstantEvaluated contexts and reinstating certain restrictions on where lambda expressions can occur in C++17.
- update the clang tablegen backend that uses these Enumerators, and add the relevant scope where needed.
llvm-svn: 299316
Correct class-template deprecation behavior
Based on the comment in the test, and my reading of the standard, a deprecated warning should be issued in the following case:
template<typename T> [[deprecated]] class Foo{}; Foo<int> f;
This was not the case, because the ClassTemplateSpecializationDecl creation did not also copy the deprecated attribute.
Note: I did NOT audit the complete set of attributes to see WHICH ones should be copied, so instead I simply copy ONLY the deprecated attribute.
Previous DiffRev: https://reviews.llvm.org/D27486, was reverted.
This patch fixes the issues brought up here by the reverter: https://reviews.llvm.org/rL298410
Differential Revision: https://reviews.llvm.org/D31245
llvm-svn: 298634
Based on the comment in the test, and my reading of the standard, a deprecated warning should be issued in the following case:
template<typename T> [[deprecated]] class Foo{}; Foo<int> f;
This was not the case, because the ClassTemplateSpecializationDecl creation did not also copy the deprecated attribute.
Note: I did NOT audit the complete set of attributes to see WHICH ones should be copied, so instead I simply copy ONLY the deprecated attribute.
Differential Revision: https://reviews.llvm.org/D27486
llvm-svn: 298410
A 'decltype(auto)' parameter can match any other kind of non-type template
parameter, so should be usable in place of any other parameter in a template
template argument. The standard is sadly extremely unclear on how this is
supposed to work, but this seems like the obviously-correct result.
It's less clear whether an 'auto' parameter should be able to match
'decltype(auto)', since the former cannot be used if the latter turns out to be
used for a reference type, but if we disallow that then consistency suggests we
should also disallow 'auto' matching 'T' for the same reason, defeating
intended use cases of the feature.
llvm-svn: 295866
template deduction guides for class template argument deduction.
Ensure that we have a local instantiation scope for tracking the instantiated
parameters. Additionally, unusually, we're substituting at depth 1 and leaving
depth 0 alone; make sure that we don't reduce template parameter depth by 2 for
inner parameters in the process. (This is probably also broken for alias
templates in the case where they're expanded within a dependent context, but
this patch doesn't fix that.)
llvm-svn: 295696
instantiation.
In preparation for converting the template stack to a more general context
stack (so we can include context notes for other kinds of context).
llvm-svn: 295686