The schedule of a fused loop has one isl_space per statement, such that
a conversion to a isl_map fails. However, the prevectorization is
interested in the schedule space only: Converting to the non-union
representation only after extracting the schedule range fixes the problem.
This fixes llvm.org/PR46578
The member LastSchedule was never set, such that printScop would always
print "n/a" instead of the last schedule.
To ensure that the isl_ctx lives as least as long as the stored
schedule, also store a shared_ptr.
Also set the schedule tree output style to ISL_YAML_STYLE_BLOCK to avoid
printing everything on a single line.
`opt -polly-opt-isl -analyze` will be used in the next commit.
If we don't know anything about the alignment of a pointer, Align(1) is
still correct: all pointers are at least 1-byte aligned.
Included in this patch is a bugfix for an issue discovered during this
cleanup: pointers with "dereferenceable" attributes/metadata were
assumed to be aligned according to the type of the pointer. This
wasn't intentional, as far as I can tell, so Loads.cpp was fixed to
stop making this assumption. Frontends may need to be updated. I
updated clang's handling of C++ references, and added a release note for
this.
Differential Revision: https://reviews.llvm.org/D80072
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
Due to libPolly now using the component infrastructure, it no longer carries all
dependencies as it used to do.
Differential Revision: https://reviews.llvm.org/D79295
After the update to ISL to isl-0.22.1-87-gfee05a13 and its change of
isl_*_dim returning -1 instead of 0, the -1 got wrapped-around to
UINT_MAX because Polly often uses 'unsigned' type to represent
dimensions, as ISL did before this patch. This may happen in normal
executions after an out-of-quota.
Fix by catching the error-case earlier.
This will allow us to use the datalayout to disambiguate other
constructs in IR, like load alignment. Split off from D78403.
Differential Revision: https://reviews.llvm.org/D78413
This is equivalent in terms of LLVM IR semantics, but we want to
transition away from using MaybeAlign to represent the alignment of
these instructions.
Differential Revision: https://reviews.llvm.org/D77984
The patch introduces the system to distinctively store the information
needed for the Control Flow Graph as well as the instrumentary needed for
the follow-up changes: BlockFrequencyInfo and BranchProbabilityInfo.
The patch is a part of sequence of three patches, related to graphs Heat Coloring.
Reviewers: rcorcs, apilipenko, davidxl, sfertile, fedor.sergeev, eraman, bollu
Differential Revision: https://reviews.llvm.org/D76820
The option is passed as argv to ISL's command line option parser.
Polly's own own command line options take precedence over options passed
as `-polly-isl-arg`. For instance,
`-polly-isl-arg=--schedule-outer-coincidence` will be ignored in favor
of `-polly-opt-outer-coincidence`.
Reviewed By: grosser
Differential Revision: https://reviews.llvm.org/D77303
Summary:
This patch moves the getIndexExpressionsFromGEP function from polly
into ScalarEvolution so that both polly and DependenceAnalysis can
use it for the purpose of subscript delinearization when the array
sizes are not parametric.
Authored By: bmahjour
Reviewer: Meinersbur, sebpop, fhahn, dmgreen, grosser, etiotto, bollu
Reviewed By: Meinersbur
Subscribers: hiraditya, arphaman, Whitney, ppc-slack, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73995
Pass plugins introduced in D61446 do not support dynamic linking on
Windows, hence the option LLVM_${name_upper}_LINK_INTO_TOOLS can only
work being set to "ON". Currently, it defaults to "OFF" such that such
plugins are inoperable by default on Windows. Change the default for
subprojects to follow LLVM_ENABLE_PROJECTS.
Reviewed By: serge-sans-paille, MaskRay
Differential Revision: https://reviews.llvm.org/D72372
Relative to the original commit, this fixes some warnings,
and is based on the deletion of the IRBuilder copy constructor
in D74693. The automatic copy constructor would no longer be
safe.
-----
Related llvm-dev thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/138951.html
This patch moves the IRBuilder from templating over the constant
folder and inserter towards making both of these virtual.
There are a couple of motivations for this:
1. It's not possible to share code between use-sites that use
different IRBuilder folders/inserters (short of templating the code
and moving it into headers).
2. Methods currently defined on IRBuilderBase (which is not templated)
do not use the custom inserter, resulting in subtle bugs (e.g.
incorrect InstCombine worklist management). It would be possible to
move those into the templated IRBuilder, but...
3. The vast majority of the IRBuilder implementation has to live
in the header, because it depends on the template arguments.
4. We have many unnecessary dependencies on IRBuilder.h,
because it is not easy to forward-declare. (Significant parts of
the backend depend on it via TargetLowering.h, for example.)
This patch addresses the issue by making the following changes:
* IRBuilderDefaultInserter::InsertHelper becomes virtual.
IRBuilderBase accepts a reference to it.
* IRBuilderFolder is introduced as a virtual base class. It is
implemented by ConstantFolder (default), NoFolder and TargetFolder.
IRBuilderBase has a reference to this as well.
* All the logic is moved from IRBuilder to IRBuilderBase. This means
that methods can in the future replace their IRBuilder<> & uses
(or other specific IRBuilder types) with IRBuilderBase & and thus
be usable with different IRBuilders.
* The IRBuilder class is now a thin wrapper around IRBuilderBase.
Essentially it only stores the folder and inserter and takes care
of constructing the base builder.
What this patch doesn't do, but should be simple followups after this change:
* Fixing use of the inserter for creation methods originally defined
on IRBuilderBase.
* Replacing IRBuilder<> uses in arguments with IRBuilderBase, where useful.
* Moving code from the IRBuilder header to the source file.
From the user perspective, these changes should be mostly transparent:
The only thing that consumers using a custom inserted may need to do is
inherit from IRBuilderDefaultInserter publicly and mark their InsertHelper
as public.
Differential Revision: https://reviews.llvm.org/D73835
Simply dropping the createPollyIRBuilder() function here, because
it doesn't do much. Also directly initialize Expander in
ScopExpander instead of going through the copy-constructor.
Related llvm-dev thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/138951.html
This patch moves the IRBuilder from templating over the constant
folder and inserter towards making both of these virtual.
There are a couple of motivations for this:
1. It's not possible to share code between use-sites that use
different IRBuilder folders/inserters (short of templating the code
and moving it into headers).
2. Methods currently defined on IRBuilderBase (which is not templated)
do not use the custom inserter, resulting in subtle bugs (e.g.
incorrect InstCombine worklist management). It would be possible to
move those into the templated IRBuilder, but...
3. The vast majority of the IRBuilder implementation has to live
in the header, because it depends on the template arguments.
4. We have many unnecessary dependencies on IRBuilder.h,
because it is not easy to forward-declare. (Significant parts of
the backend depend on it via TargetLowering.h, for example.)
This patch addresses the issue by making the following changes:
* IRBuilderDefaultInserter::InsertHelper becomes virtual.
IRBuilderBase accepts a reference to it.
* IRBuilderFolder is introduced as a virtual base class. It is
implemented by ConstantFolder (default), NoFolder and TargetFolder.
IRBuilderBase has a reference to this as well.
* All the logic is moved from IRBuilder to IRBuilderBase. This means
that methods can in the future replace their IRBuilder<> & uses
(or other specific IRBuilder types) with IRBuilderBase & and thus
be usable with different IRBuilders.
* The IRBuilder class is now a thin wrapper around IRBuilderBase.
Essentially it only stores the folder and inserter and takes care
of constructing the base builder.
What this patch doesn't do, but should be simple followups after this change:
* Fixing use of the inserter for creation methods originally defined
on IRBuilderBase.
* Replacing IRBuilder<> uses in arguments with IRBuilderBase, where useful.
* Moving code from the IRBuilder header to the source file.
From the user perspective, these changes should be mostly transparent:
The only thing that consumers using a custom inserted may need to do is
inherit from IRBuilderDefaultInserter publicly and mark their InsertHelper
as public.
Differential Revision: https://reviews.llvm.org/D73835
This reverts commit 80a34ae311 with fixes.
Previously, since bots turning on EXPENSIVE_CHECKS are essentially turning on
MachineVerifierPass by default on X86 and the fact that
inline-asm-avx-v-constraint-32bit.ll and inline-asm-avx512vl-v-constraint-32bit.ll
are not expected to generate functioning machine code, this would go
down to `report_fatal_error` in MachineVerifierPass. Here passing
`-verify-machineinstrs=0` to make the intent explicit.
This reverts commit 80a34ae311 with fixes.
On bots llvm-clang-x86_64-expensive-checks-ubuntu and
llvm-clang-x86_64-expensive-checks-debian only,
llc returns 0 for these two tests unexpectedly. I tweaked the RUN line a little
bit in the hope that LIT is the culprit since this change is not in the
codepath these tests are testing.
llvm\test\CodeGen\X86\inline-asm-avx-v-constraint-32bit.ll
llvm\test\CodeGen\X86\inline-asm-avx512vl-v-constraint-32bit.ll
../polly/lib/Transform/ScheduleOptimizer.cpp:812:54: warning: comparison of integers of different signs: 'isl_size' (aka 'int') and 'const unsigned int' [-Wsign-compare]
isl_schedule_node_band_n_member(Node.get()) >
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^
Static chunked OpenMP scheduling has not been treated correctly.
This patch fixes the problem that threads would not process their
(work-)chunks as intended.
Differential Revision: https://reviews.llvm.org/D61081
The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
The idiom
for (auto i = n - n; i < n; i += 1)
was intended to automatically derive the type of i from n
(signed/unsigned int) and avoid the 'mixed signed/unsigned comparison'
warning. However, almost-always-auto was never used in the LLVM coding
style (although we used it in Polly for some time) and I did never
intended to use this idiom upstream.
PVS Studio may warns about this idiom as 'warning: both sides of
operator are equivalent [misc-redundant-expression]'.
Remove the use of auto and directly use unsigned.
Also see http://llvm.org/PR44768
Commit 777180a "[ADT] Make StringRef's std::string conversion operator explicit"
caused Polly's GPU code generator to not compile anymore. The rest of
Polly has already been fixed in commit
0257a9 "Fix polly build after StringRef change."