This patch lowers the _mm[256|512]_cvtepi{64|32|16}_epi{32|16|8} intrinsics to
native IR in cases where the result's length is less than 128 bits.
The resulting IR for 256-bit inputs is folded into VPMOV instructions, while for
128-bit inputs the vpshufb (or, in the 64-to-32-bit case, vinsertps)
instructions are generated instead
Differential Revision: https://reviews.llvm.org/D48712
llvm-svn: 336643
Shufflevector is easier to generate and matches what the backend pattern matches without relying on constant selects being turned into shuffles.
While I was there I also made the IR regular expressions a little stricter to ensure operand order on the shuffle.
llvm-svn: 336388
This patch removes on optimization used with the TRUE/FALSE
predicates, as was suggested in https://reviews.llvm.org/D45616
for r335339.
The optimization was buggy, since r335339 used it also
for *_mask builtins, without actually applying the mask -- the
mask argument was just ignored.
Reviewers: craig.topper, uriel.k, RKSimon, andrew.w.kaylor, spatel, scanon, efriedma
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D48715
llvm-svn: 336355
Add test cases with each predicate using the following
intrinsics:
_mm_cmp_pd
_mm_cmp_ps
_mm256_cmp_pd
_mm256_cmp_ps
_mm_cmp_pd_mask
_mm_cmp_ps_mask
_mm256_cmp_pd_mask
_mm256_cmp_ps_mask
_mm512_cmp_pd_mask
_mm512_cmp_ps_mask
_mm_mask_cmp_pd_mask
_mm_mask_cmp_ps_mask
_mm256_mask_cmp_pd_mask
_mm256_mask_cmp_ps_mask
_mm512_mask_cmp_pd_mask
_mm512_mask_cmp_ps_mask
Some of these are marked with FIXME, as there is bug in lowering
e.g. _mm512_mask_cmp_ps_mask.
llvm-svn: 336346
All of these found by grepping through IR from the builtin tests for extra trunc and zext/sext instructions that shouldn't have been there.
Some of these were real bugs where we lost bits from the user input:
_mm512_mask_broadcast_f32x8
_mm512_maskz_broadcast_f32x8
_mm512_mask_broadcast_i32x8
_mm512_maskz_broadcast_i32x8
_mm256_mask_cvtusepi16_storeu_epi8
llvm-svn: 336042
Summary: We've had these target independent intrinsics for at least a year and a half. Looks like they do exactly what we need here and the backend already supports them.
Reviewers: RKSimon, delena, spatel, GBuella
Reviewed By: RKSimon
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D47693
llvm-svn: 334366
Test changes are due to differences in how we generate undef elements now. We also changed the types used for extractf128_si256/insertf128_si256 to match the signature of the builtin that previously existed which this patch resurrects. This also matches gcc.
llvm-svn: 334261
This patch replaces all packed (and scalar without rounding
mode) fused intrinsics with fmadd/fmaddsub variations.
Then fmadd/fmaddsub are lowered to native IR.
Patch by tkrupa
Reviewers: craig.topper, sroland, spatel, RKSimon
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D47444
llvm-svn: 333555
Because the intrinsics in the headers are implemented as macros, we can't just use a select builtin and pternlog builtin. This would require one of the macro arguments to be used twice. Depending on what was passed to the macro we could expand an expression twice leading to weird behavior. We could maybe declare our local variable in the macro, but that would need to worry about name collisions.
To avoid that just generate IR directly in CGBuiltin.cpp.
Differential Revision: https://reviews.llvm.org/D47125
llvm-svn: 332891
I believe this is safe assuming default default FP environment. The conversion might be inexact, but it can never overflow the FP type so this shouldn't be undefined behavior for the uitofp/sitofp instructions.
We already do something similar for scalar conversions.
Differential Revision: https://reviews.llvm.org/D46863
llvm-svn: 332882
As long as the destination type is a 256 or 128 bit vector with the same number of elements we can use __builtin_convertvector to directly generate trunc IR instruction which will be handled natively by the backend.
Differential Revision: https://reviews.llvm.org/D46742
llvm-svn: 332266
The unmasked versions already didn't have this restrction. I don't think gcc or icc limit these to 64-bit mode so we shouldn't either.
llvm-svn: 330681
I believe all the pieces are now in place in the backend to make this work correctly. We can either mask the input to 32 bits for pmuludg or shl/ashr for pmuldq and use a regular mul instruction. The backend should combine this to PMULUDQ/PMULDQ and then SimplifyDemandedBits will remove the and/shifts.
Differential Revision: https://reviews.llvm.org/D45421
llvm-svn: 329605
Change Header files of the intrinsics for lowering test and testn intrinsics to IR code.
Removed test and testn builtins from clang
Differential Revision: https://reviews.llvm.org/D38737
llvm-svn: 318035
This patch, together with a matching llvm patch (https://reviews.llvm.org/D38671), implements the lowering of X86 shuffle i/f intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D38672
Change-Id: I9b3c2f2b34323bd9ccb21d0c1832f848b88ec047
llvm-svn: 318025
x86 has undef SSE/AVX intrinsics that should represent a bogus register operand.
This is not the same as LLVM's undef value which can take on multiple bit patterns.
There are better solutions / follow-ups to this discussed here:
https://bugs.llvm.org/show_bug.cgi?id=32176
...but this should prevent miscompiles with a one-line code change.
Differential Revision: https://reviews.llvm.org/D30834
llvm-svn: 297588
Both the (V)CVTDQ2PD (i32 to f64) and (V)CVTUDQ2PD (u32 to f64) conversion instructions are lossless and can be safely represented as generic __builtin_convertvector calls instead of x86 intrinsics without affecting final codegen.
This patch removes the clang builtins and their use in the headers - a future patch will deal with removing the llvm intrinsics.
This is an extension patch to D20528 which dealt with the equivalent sse/avx cases.
Differential Revision: https://reviews.llvm.org/D26686
llvm-svn: 287088
This is part of a set of changes to allow InstCombine in the backend to optimize variable shifts without having to know about masking.
llvm-svn: 286757
Unfortunately, the backend currently doesn't fold masks into the instructions correctly when they come from these shufflevectors. I'll work on that in a future commit.
llvm-svn: 285667
Unfortunately, the backend currently doesn't fold masks into the instructions correctly when they come from these shufflevectors. I'll work on that in a future commit.
llvm-svn: 285540