- This is a WIP...
- This adds -march= handling to the driver, and fixes the defaulting
of -mcpu on Darwin (which was using the wrong test).
Instead of handling -m{sse, ...} in the driver, pass them to clang-cc as
-target-feature [+-]name
In clang-cc, communicate with the (clang) target to discover the legal
features of a target, and the features which are enabled based on
-mcpu. This is currently hardcoded just enough to not be a feature
regression, we need to get this information from the backend's
TableGen information somehow.
This is used to construct the full list of features which are being
used, which is in turn used to initialize the predefines.
llvm-svn: 71061
in C++, taking into account conversions to the "composite pointer
type" so that we can compare, e.g., a pointer to a derived class to a
pointer to a base class.
Also, upgrade the "comparing distinct pointer types" from a warning to
an error for C++, since this is clearly an error. Turns out that we
hadn't gone through and audited this code for C++, ever.
Fixes <rdar://problem/6816420>.
llvm-svn: 70829
"function designator".
(This causes a minor glitch in the
diagnostics for C++ member pointers, but we weren't printing the
right diagnostic there anyway.)
llvm-svn: 70307
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
Remove an atrocious amount of trailing whitespace in the overloaded operator mangler. Sorry, couldn't help myself.
Change the DeclType parameter of Sema::CheckReferenceInit to be passed by value instead of reference. It wasn't changed anywhere.
Let the parser handle C++'s irregular grammar around assignment-expression and conditional-expression.
And finally, the reason for all this stuff: implement C++ semantics for the conditional operator. The implementation is complete except for determining lvalueness.
llvm-svn: 69299
nested name specifiers. Now we emit stuff like:
t.cpp:8:13: error: unknown type name 'X'
static foo::X P;
~~~~ ^
instead of:
t.cpp:8:16: error: invalid token after top level declarator
static foo::X P;
^
This is inspired by a really awful error message I got from
g++ when I misspelt diag::kind as diag::Kind.
llvm-svn: 69086
that I noticed working on other things.
Instead of emitting:
t2.cc:1:8: error: use of undeclared identifier 'g'
int x(*g);
^
t2.cc:1:10: error: expected ')'
int x(*g);
^
t2.cc:1:6: note: to match this '('
int x(*g);
^
We now only emit:
t2.cc:1:7: warning: type specifier missing, defaults to 'int'
int x(*g);
^
Note that the example in SemaCXX/nested-name-spec.cpp:f4 is still
not great, we now produce both of:
void f4(undef::C); // expected-error {{use of undeclared identifier 'undef'}} \
expected-error {{variable has incomplete type 'void'}}
The second diagnostic should be silenced by something getting marked invalid.
I don't plan to fix this though.
llvm-svn: 68919
Implement the rvalue reference overload dance for returning local objects. Returning a local object first tries to find a move constructor now.
The error message when no move constructor is defined (or is not applicable) and the copy constructor is deleted is quite ugly, though.
llvm-svn: 68902
failures that involve malformed types, e.g., "typename X::foo" where
"foo" isn't a type, or "std::vector<void>" that doens't instantiate
properly.
Similarly, be a bit smarter in our handling of ambiguities that occur
in Sema::getTypeName, to eliminate duplicate error messages about
ambiguous name lookup.
This eliminates two XFAILs in test/SemaCXX, one of which was crying
out to us, trying to tell us that we were producing repeated error
messages.
llvm-svn: 68251
heuristics to determine when it's useful to desugar a type for display
to the user. Introduce two C++-specific heuristics:
- For a qualified type (like "foo::bar"), only produce a new
desugred type if desugaring the qualified type ("bar", in this
case) produces something interesting. For example, if "foo::bar"
refers to a class named "bar", don't desugar. However, if
"foo::bar" refers to a typedef of something else, desugar to that
something else. This gives some useful desugaring such as
"foo::bar (aka 'int')".
- Don't desugar class template specialization types like
"basic_string<char>" down to their underlying "class
basic_string<char, char_traits<char>, allocator<char>>, etc.";
it's better just to leave such types alone.
Update diagnostics.html with some discussion and examples of type
preservation in C++, showing qualified names and class template
specialization types.
llvm-svn: 68207
class C {
C() { }
int a;
};
C::C() : a(10) { }
We also diagnose when initializers are used on declarations that aren't constructors:
t.cpp:1:10: error: only constructors take base initializers
void f() : a(10) { }
^
Doug and/or Sebastian: I'd appreciate a review, especially the nested-name-spec test results (from the looks of it we now match gcc in that test.)
llvm-svn: 67672
class C {
void g(C c);
virtual void f() = 0;
};
In this case, C is not known to be abstract when doing semantic analysis on g. This is done by recursively traversing the abstract class and checking the types of member functions.
llvm-svn: 67594
a class template. At present, we can only instantiation normal
methods, but not constructors, destructors, or conversion operators.
As ever, this contains a bit of refactoring in Sema's type-checking. In
particular:
- Split ActOnFunctionDeclarator into ActOnFunctionDeclarator
(handling the declarator itself) and CheckFunctionDeclaration
(checking for the the function declaration), the latter of which
is also used by template instantiation.
- We were performing the adjustment of function parameter types in
three places; collect those into a single new routine.
- When the type of a parameter is adjusted, allocate an
OriginalParmVarDecl to keep track of the type as it was written.
- Eliminate a redundant check for out-of-line declarations of member
functions; hide more C++-specific checks on function declarations
behind if(getLangOptions().CPlusPlus).
llvm-svn: 67575
QualifiedNameType and QualifiedDeclRefExpr. We now keep track of the
exact nested-name-specifier spelling for a QualifiedDeclRefExpr, and
use that spelling when printing ASTs. This fixes PR3493.
llvm-svn: 67283
specialization names. This way, we keep track of sugared types like
std::vector<Real>
I believe we are now using QualifiedNameTypes everywhere we can. Next
step: QualifiedDeclRefExprs.
llvm-svn: 67268
qualified name, e.g.,
foo::x
so that we retain the nested-name-specifier as written in the source
code and can reproduce that qualified name when printing the types
back (e.g., in diagnostics). This is PR3493, which won't be complete
until finished the other tasks mentioned near the end of this commit.
The parser's representation of nested-name-specifiers, CXXScopeSpec,
is now a bit fatter, because it needs to contain the scopes that
precede each '::' and keep track of whether the global scoping
operator '::' was at the beginning. For example, we need to keep track
of the leading '::', 'foo', and 'bar' in
::foo::bar::x
The Action's CXXScopeTy * is no longer a DeclContext *. It's now the
opaque version of the new NestedNameSpecifier, which contains a single
component of a nested-name-specifier (either a DeclContext * or a Type
*, bitmangled).
The new sugar type QualifiedNameType composes a sequence of
NestedNameSpecifiers with a representation of the type we're actually
referring to. At present, we only build QualifiedNameType nodes within
Sema::getTypeName. This will be extended to other type-constructing
actions (e.g., ActOnClassTemplateId).
Also on the way: QualifiedDeclRefExprs will also store a sequence of
NestedNameSpecifiers, so that we can print out the property
nested-name-specifier. I expect to also use this for handling
dependent names like Fibonacci<I - 1>::value.
llvm-svn: 67265
class members to the corresponding in-class declaration.
Diagnose the erroneous use of 'static' on out-of-line definitions of
class members.
llvm-svn: 66740
template. More importantly, start to sort out the issues regarding
complete types and nested-name-specifiers, especially the question of:
when do we instantiate a class template specialization that occurs to
the left of a '::' in a nested-name-specifier?
llvm-svn: 66662
- When we are declaring a function in local scope, we can merge with
a visible declaration from an outer scope if that declaration
refers to an entity with linkage. This behavior now works in C++
and properly ignores entities without linkage.
- Diagnose the use of "static" on a function declaration in local
scope.
- Diagnose the declaration of a static function after a non-static
declaration of the same function.
- Propagate the storage specifier to a function declaration from a
prior declaration (PR3425)
- Don't name-mangle "main"
llvm-svn: 65360
information about types. We often print diagnostics where we say
"foo_t" is bad, but the user doesn't know how foo_t is declared
(because it is a typedef). Fix this by expanding sugar when present
in a diagnostic (and not one of a few special cases, like vectors).
Before:
t.m:5:2: error: invalid operands to binary expression ('typeof(P)' and 'typeof(F)')
MAX(P, F);
^~~~~~~~~
t.m:1:78: note: instantiated from:
#define MAX(A,B) ({ __typeof__(A) __a = (A); __typeof__(B) __b = (B); __a < __b ? __b : __a; })
^
After:
t.m:5:2: error: invalid operands to binary expression ('typeof(P)' (aka 'struct mystruct') and 'typeof(F)' (aka 'float'))
MAX(P, F);
^~~~~~~~~
t.m:1:78: note: instantiated from:
#define MAX(A,B) ({ __typeof__(A) __a = (A); __typeof__(B) __b = (B); __a < __b ? __b : __a; })
^
llvm-svn: 65081
(as GCC does), except when we've performed overload resolution and
found an unavailable function: in this case, we actually error.
Merge the checking of unavailable functions with the checking for
deprecated functions. This unifies a bit of code, and makes sure that
we're checking for unavailable functions in the right places. Also,
this check can cause an error. We may, eventually, want an option to
make "unavailable" warnings into errors.
Implement much of the logic needed for C++0x deleted functions, which
are effectively the same as "unavailable" functions (but always cause
an error when referenced). However, we don't have the syntax to
specify deleted functions yet :)
llvm-svn: 64955
to do in this area, since there are other places that reference
FunctionDecls.
Don't allow "overloadable" functions (in C) to be declared without a
prototype.
llvm-svn: 64897
complex conversions where the conversion between the real types is an
integral promotion. This is how G++ handles complex promotions for its
complex integer extension.
llvm-svn: 64344
system. Since C99 doesn't have overloading and C++ doesn't have
_Complex, there is no specification for this. Here's what I think
makes sense.
Complex conversions come in several flavors:
- Complex promotions: a complex -> complex conversion where the
underlying real-type conversion is a floating-point promotion. GCC
seems to call this a promotion, EDG does something else. This is
given "promotion" rank for determining the best viable function.
- Complex conversions: a complex -> complex conversion that is
not a complex promotion. This is given "conversion" rank for
determining the best viable function.
- Complex-real conversions: a real -> complex or complex -> real
conversion. This is given "conversion" rank for determining the
best viable function.
These rules are the same for C99 (when using the "overloadable"
attribute) and C++. However, there is one difference in the handling
of floating-point promotions: in C99, float -> long double and double
-> long double are considered promotions (so we give them "promotion"
rank), while C++ considers these conversions ("conversion" rank).
llvm-svn: 64343
Also, put Objective-C protocols into their own identifier
namespace. Otherwise, we find protocols when we don't want to in C++
(but not in C).
llvm-svn: 63877
extension. The interaction with designated initializers is a
bit... interesting... but we follow GNU's lead and don't permit too
much crazy code in this area.
Also, make the "excess initializers" error message a bit more
informative.
Addresses PR2561: http://llvm.org/bugs/show_bug.cgi?id=2561
llvm-svn: 63785
unqualified-id '('
in C++. The unqualified-id might not refer to any declaration in our
current scope, but declarations by that name might be found via
argument-dependent lookup. We now do so properly.
As part of this change, CXXDependentNameExpr, which was previously
designed to express the unqualified-id in the above constructor within
templates, has become UnresolvedFunctionNameExpr, which does
effectively the same thing but will work for both templates and
non-templates.
Additionally, we cope with all unqualified-ids, since ADL also applies
in cases like
operator+(x, y)
llvm-svn: 63733
a.k.a. Koenig lookup) in C++. Most of the pieces are in place, but for
two:
- In an unqualified call g(x), even if the name does not refer to
anything in the current scope, we can still find functions named
"g" based on ADL. We don't yet have this ability.
- ADL will need updating for friend functions and templates.
llvm-svn: 63692
direct-initialization following a user-defined conversion can select
any constructor; it just can't employ any user-defined
conversions. So we ban those conversions and classify the constructor
call based on the relationship between the "from" and "to" types in
the conversion.
llvm-svn: 63554
sequence. Previously, we weren't permitting the second step to call
copy constructors, which left user-defined conversion sequences
surprisingly broken.
Now, we perform overload resolution among all of the constructors, but
only accept the result if it makes the conversion a standard
conversion. Note that this behavior is different from both GCC and EDG
(which don't agree with each other, either); I've submitted a core
issue on the matter.
llvm-svn: 63450
- Support initialization of reference members; complain if any
reference members are left uninitialized.
- Use C++ copy-initialization for initializing each element (falls
back to constraint checking in C)
- Make sure we diagnose when one tries to provide an initializer
list for a non-aggregate.
- Don't complain about empty initializers in C++ (they are permitted)
- Unrelated but necessary: don't bother trying to convert the
decl-specifier-seq to a type when we're dealing with a C++
constructor, destructor, or conversion operator; it results in
spurious warnings.
llvm-svn: 63431
Fix a stupid mistake in UnwrapSimilarPointers that made any two member pointers compatible as long as the pointee was the same.
Make a few style corrections as suggested by Chris.
llvm-svn: 63215
new DiagnoseIncompleteType. It provides additional information about
struct/class/union/enum types when possible, either by pointing to the
forward declaration of that type or by pointing to the definition (if
we're in the process of defining that type).
Fixes <rdar://problem/6500531>.
llvm-svn: 62521
even when we are still defining the TagDecl. This is required so that
qualified name lookup of a class name within its definition works (see
the new bits in test/SemaCXX/qualified-id-lookup.cpp).
As part of this, move the nested redefinition checking code into
ActOnTag. This gives us diagnostics earlier (when we try to perform
the nested redefinition, rather than when we try to complete the 2nd
definition) and removes some code duplication.
llvm-svn: 62386
analysis and AST-building for the cases where we have N != 1
arguments. For N == 1 arguments, we need to finish the C++
implementation of explicit type casts (C++ [expr.cast]).
llvm-svn: 62329
This change refactors and cleans up our handling of name lookup with
LookupDecl. There are several aspects to this refactoring:
- The criteria for name lookup is now encapsulated into the class
LookupCriteria, which replaces the hideous set of boolean values
that LookupDecl currently has.
- The results of name lookup are returned in a new class
LookupResult, which can lazily build OverloadedFunctionDecls for
overloaded function sets (and, eventually, eliminate the need to
allocate member for OverloadedFunctionDecls) and contains a
placeholder for handling ambiguous name lookup (for C++).
- The primary entry points for name lookup are now LookupName (for
unqualified name lookup) and LookupQualifiedName (for qualified
name lookup). There is also a convenience function
LookupParsedName that handles qualified/unqualified name lookup
when given a scope specifier. Together, these routines are meant
to gradually replace the kludgy LookupDecl, but this won't happen
until after we have base class lookup (which forces us to cope
with ambiguities).
- Documented the heck out of name lookup. Experimenting a little
with using Doxygen's member groups to make some sense of the Sema
class. Feedback welcome!
- Fixes some lingering issues with name lookup for
nested-name-specifiers, which now goes through
LookupName/LookupQualifiedName.
llvm-svn: 62245
Small cleanup in the handling of user-defined conversions.
Also, implement an optimization when constructing a call. We avoid
recomputing implicit conversion sequences and instead use those
conversion sequences that we computed as part of overload resolution.
llvm-svn: 62231