Summary:
This test now passes for Clang and GCC. I do not know why it was
disabled for GCC with link to a bug which should not have had an
effect on this test.
Test Plan: dotest.py -C gcc -p TestDataFormatterStdIterator
Reviewers: vharron
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8396
llvm-svn: 232552
As StringInit::get() accepts StringRef there is no need
to construct a std::string out of the StringRef input and
then construct a new StringRef from the std::string.
llvm-svn: 232551
Break MDExpression off of DebugNode (inherit directly from `MDNode`) and
drop the fake `DW_TAG_expression` tag in the process.
AFAICT, there's no real functionality change here. The tag was
originally used by `DIDescriptor::isExpression()` to discriminate
between `MDNode`s, but in the new hierarchy we don't need that.
Fixes PR22780.
llvm-svn: 232550
Summary:
The existing formatter in C++ has been removed as it was not being used.
The associated test TestDataFormatterStdVBool.py has been enabled for
both Clang and GCC on Linux.
Test Plan: dotest.py -p TestDataFormatterStdVBool
Reviewers: vharron, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8390
llvm-svn: 232548
Summary:
COFF COMDATs (for selection kinds other than 'select any') require at
least one non-section symbol in the symbol table.
Satisfy this by morally enhancing the linkage from private to internal.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8374
llvm-svn: 232539
The HandlerMap describes, to the runtime, what sort of catches surround
the try. In principle, this structure has to be emitted by the backend
because only it knows the layout of the stack (the runtime needs to know
where on the stack the destination of a copy lives, etc.) but there is
some C++ specific information that the backend can't reason about.
Stick this information in special LLVM globals with the relevant
"const", "volatile", "reference" info mangled into the name.
llvm-svn: 232538
Before this patch code wanting to create temporary labels for a given entity
(function, cu, exception range, etc) had to keep its own counter to have stable
symbol names.
createTempSymbol would still add a suffix to make sure a new symbol was always
returned, but it kept a single counter. Because of that, if we were to use
just createTempSymbol("cu_begin"), the label could change from cu_begin42 to
cu_begin43 because some other code started using temporary labels.
Simplify this by just keeping one counter per prefix and removing the various
specialized counters.
llvm-svn: 232535
This removes ScriptInterpreterObject from the codebase completely.
Places that used to rely on ScriptInterpreterObject now use
StructuredData::Object and its derived classes. To support this,
a new type of StructuredData object is introduced, called
StructuredData::Generic, which stores a void*. Internally within
the python library, StructuredPythonObject subclasses this
StructuredData::Generic class so that it can addref and decref
the python object on construction and destruction.
Additionally, all of the classes in PythonDataObjects.h such
as PythonList, PythonDictionary, etc now provide a method to
create an instance of the corresponding StructuredData type. For
example, there is PythonDictionary::CreateStructuredDictionary.
To eliminate dependencies on PythonDataObjects for external
callers, all ScriptInterpreter methods now return only
StructuredData classes
The rest of the changes in this CL are focused on fixing up
users of PythonDataObjects classes to use the new StructuredData
classes.
llvm-svn: 232534
Also, add several entries to vectorizable functions table, and
corresponding tests. The table isn't complete, it'll be populated later.
Review: http://reviews.llvm.org/D8131
llvm-svn: 232531
We have observed that noreg was being generated due to a bug in FastIsel and was not being detected during emission. It happens that in the Asm emission there is an assertion that detects this in getRegisterName() from the tbl-generated file PPCGenAsmWriter.inc. However, when emitting an Obj file, invalid registers can be emitted given that no check are made in getBinaryCodeFromInstr() from PPCGenMCCodeEmitter.inc. In order to cover all cases this adds an assertion for reg operands in LowerPPCMachineInstrToMCInst.
llvm-svn: 232525
Previously, we would error out on this code because the default argument
wasn't parsed until the end of Outer:
struct __declspec(dllexport) Outer {
struct __declspec(dllexport) Inner {
Inner(void *p = 0);
};
};
Now we do the checking on the closing brace of Outer instead of Inner.
llvm-svn: 232519
Same as MakeArgString in r232465, keep only LookupSymbol(Twine)
while making sure it handles the StringRef like cases efficiently
using twine::toStringRef.
llvm-svn: 232517
Interleave the code for narrow and wide character streams. This makes it
more obvious that the two pieces of code are identical. Furthermore, it
makes it easier to conditionally compile support for certain streams, as
less #ifdef blocks are needed.
Differential Revision: http://reviews.llvm.org/D8342
Reviewed by: marshall
llvm-svn: 232516
Summary:
This patch adds the `<experimental/tuple>` header (almost) as specified in the latest draft of the library fundamentals TS.
The main changes in this patch are:
1. Added variable template `tuple_size_v`
2. Added function `apply(Func &&, Tuple &&)`.
3. Changed `__invoke` to be `_LIBCPP_CONSTEXPR_AFTER_CXX11`.
The `apply(...)` implementation uses `__invoke` to invoke the given function. `__invoke` already provides the required functionality. Using `__invoke` also allows `apply` to be used on pointers to member function/objects as an extension. In order to facilitate this `__invoke` has to be marked `constexpr`.
Test Plan:
Each new feature was tested.
The test cases for `tuple_size_v` are as follows:
1. tuple_size_v.pass.cpp
- Check `tuple_size_v` on cv qualified tuples, pairs and arrays.
2. tuple_size_v.fail.cpp
- Test on reference type.
3. tuple_size_v_2.fail.cpp
- Test on non-tuple
4. tuple_size_v_3.fail.cpp
- Test on pointer type.
The test cases for tuple.apply are as follows:
1. arg_type.pass.cpp
- Ensure that ref/pointer/cv qualified types are properly passed.
2. constexpr_types.pass.cpp
- Ensure constexpr evaluation of apply is possible for `tuple` and `pair`.
3. extended_types.pass.cpp
- Test apply on function types permitted by extension.
4. large_arity.pass.cpp
- Test that apply can evaluated on tuples and arrays with large sizes.
5. ref_qualifiers.pass.cpp
- Test that apply respects ref qualified functions.
6. return_type.pass.cpp
- Test that apply returns the proper type.
7. types.pass.cpp
- Test apply on function types as required by LFTS.
Reviewers: mclow.lists
Reviewed By: mclow.lists
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4512
llvm-svn: 232515
The input offset to needsFrameBaseReg is a negative value below the top of the
stack frame, but when converting to a positive offset from the bottom of the
stack frame this value was negated, causing the final offset to be too large
by twice the input offset's magnitude. Fix that by not negating the offset.
Patch by John Brawn
Differential Revision: http://reviews.llvm.org/D8316
llvm-svn: 232513
r186634 started verifying debug info, and r194986 disabled it by default
because it was too expensive to run the checks on every function (since
most of the graph was reachable from each function).
r206300 moved the checks to module-level to make it cheaper, but there
was already quite a bit of testcase bitrot (and the verifier would only
print `<badref>`) so I guess no one had time to turn it back on.
This does just that. Upgrade scripts this past autumn and winter
probably fixed some of the bitrot, and this weekend I fixed the verifier
output (r232275, r232417, r232418) and thusly the remaining failing
testcases (r232290, r232415).
This is part of PR22777.
llvm-svn: 232505
The experiments can be used to evaluate potential optimizations that remove
instrumentation (assess false negatives). Instead of completely removing
some instrumentation, you set Exp to a non-zero value (mask of optimization
experiments that want to remove instrumentation of this instruction).
If Exp is non-zero, this pass will emit special calls into runtime
(e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
make runtime terminate the program in a special way (with a different
exit status). Then you run the new compiler on a buggy corpus, collect
the special terminations (ideally, you don't see them at all -- no false
negatives) and make the decision on the optimization.
The exact reaction to experiments in runtime is not implemented in this patch.
It will be defined and implemented in a subsequent patch.
http://reviews.llvm.org/D8198
llvm-svn: 232502
The experiments can be used to evaluate potential optimizations that remove
instrumentation (assess false negatives). Instead of completely removing
some instrumentation, you set Exp to a non-zero value (mask of optimization
experiments that want to remove instrumentation of this instruction).
If Exp is non-zero, this pass will emit special calls into runtime
(e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
make runtime terminate the program in a special way (with a different
exit status). Then you run the new compiler on a buggy corpus, collect
the special terminations (ideally, you don't see them at all -- no false
negatives) and make the decision on the optimization.
The exact reaction to experiments in runtime is not implemented in this patch.
It will be defined and implemented in a subsequent patch.
http://reviews.llvm.org/D8198
llvm-svn: 232501