Move the combiner-state check into another function, add a few
small comments, and use a more general type in a cast<>.
In preparation for a future patch.
llvm-svn: 223834
It was missing from the VLD1/VST1 handling logic, even though the
corresponding instructions exist (same form as v2i64).
In preparation for a future patch.
llvm-svn: 223832
track of the checksum of the object so we can
track if it is modified. This fixes a testcase
(test/expression_command/issue_11588) on OS X.
Patch by Enrico Granata.
llvm-svn: 223830
RAUW in a deterministic order to try to recover the hexagon bot [1],
whose tests started failing once my GCC fixes were in for r223802.
Otherwise, I'm not sure why tests would fail there and not here.
[1]: http://lab.llvm.org:8011/builders/llvm-hexagon-elf/builds/13426
llvm-svn: 223829
LLVM_EXPLICIT is only supported by recent version of MSVC, and it seems
the not-so-recent versions get confused about the operator bool() when
tryint to resolve operator== calls.
This removed the operator bool()'s since they don't seem to be used
anyway.
llvm-svn: 223824
- adds a new flag to mark ValueObjects as "synthetic children generated"
- vends new Create functions as part of the SyntheticChildrenFrontEnd that set the flag automatically
- moves synthetic child providers over to using these new functions
No visible feature change, but preparatory work for feature change
llvm-svn: 223819
The load/store value type is currently not available when lowering the memcpy
intrinsic. Add the missing nullptr check to support this in 'computeAddress'.
Fixes rdar://problem/19178947.
llvm-svn: 223818
Getting this working correctly is a significant amount of work.
Assertions on Windows show up as error code 0xC0000409, which is
STATUS_STACK_BUFFER_OVERRUN. In order to accurately determine
that this is not just any stack buffer overrun, but one triggered
by a call to abort, we would need to analyze the call stack. This
in turn requires better symbol support for Windows executables,
and work on LLDB to make stack frames better on Windows.
For now, these are XFAIL'ed and tracked in http://llvm.org/pr21793.
llvm-svn: 223816
patterns.
This is causing Clang to miscompile itself for 32-bit x86 somehow, and likely
also on ARM and PPC. I really don't know how, but reverting now that I've
confirmed this is actually the culprit. I have a reproduction as well and so
should be able to restore this shortly.
This reverts commit r223764.
Original commit log follows:
Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.
Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.
All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.
With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.
For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
integer loads and stores. SSA values are tremendously more powerful
than "copy" intrinsics. Not doing this regresses massive amounts of
LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
SROA or every memcpy of a trivially copyable struct will prevent SSA
formation of the members of that struct. It essentially turns off
SROA.
- The closest alternative is to actually split the loads and stores when
partitioning with SROA, but this has all of the downsides historically
discussed of splitting up loads and stores -- the wide-store
information is fundamentally lost. We would also see performance
regressions for bitfield-heavy code and other places where the
integers aren't really intended to be split without seemingly
arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
a choice to make IMO.
llvm-svn: 223813
Summary:
This is desirable for WebKit and other clients of the llvm-shlib because C++ exit time destructors have a tendency to crash when invoked from multi-threaded applications.
Ideally this option will be temporary, because the ideal fix is to just not have exit time destructors.
Reviewers: chapuni, ributzka
Reviewed By: ributzka
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6572
llvm-svn: 223805
Lowering patterns were written through avx512_broadcast_pat multiclass as pattern generates VBROADCAST and COPY_TO_REGCLASS nodes.
Added lowering tests.
llvm-svn: 223804
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
replaceDbgDeclareForAlloca() replaces an alloca by a value storing the
address of what was the alloca. If there is a dbg.declare corresponding
to that alloca, we need to lower it to a dbg.value describing the additional
dereference operation to be performed to get to the underlying variable.
This is done by adding a DW_OP_deref to the complex location part of the
location description. This deref was added to the end of the operation list,
which is wrong. The expression applies to what is described by the
dbg.{declare,value}, and as we are changing this, we need to apply the
DW_OP_deref as the first operation in the list.
Part of the fix for rdar://19162268.
llvm-svn: 223799
Rewrite the pattern match code to work also with Values instead with
Instructions only. Also remove the no longer need matcher (m_Instruction).
llvm-svn: 223797
The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
llvm-svn: 223793
With the foregoing three patches, VSX instructions can be used for
little endian. This patch removes the restriction that prevented
this, and re-enables the test cases from the first three patches.
llvm-svn: 223792
When performing instruction selection for ISD::VECTOR_SHUFFLE, there
is special code for handling v2f64 and v2i64 using VSX instructions.
This code must be adjusted for little-endian. Because the two inputs
are treated as a double-wide register, we must swap their order for
little endian. To get the appropriate mask elements to use with the
big-endian biased XXPERMDI instruction, we must reverse their order
and invert the bits.
A new test is added to test the 16 possible values of the shuffle
mask. It is initially disabled for reasons specified in the test. It
is re-enabled by patch 4/4.
llvm-svn: 223791
This allows it to work with non trivial manglings like the one in COFF.
Amusingly, this can be tested with gold, as emit-llvm causes the plugin to
exit before any COFF is generated.
llvm-svn: 223790
For little endian, we need to make some straightforward adjustments in
the code expansions for scalar_to_vector and vector_extract of v2f64.
First, scalar_to_vector must place the scalar into vector element
zero. However, our implementation of SUBREG_TO_REG will place it into
big-element vector element zero (high-order bits), and for little
endian we need it in the low-order bits. The LE implementation splats
the high-order doubleword into the low-order doubleword.
Second, the meaning of (vector_extract x, 0) and (vector_extract x, 1)
must be reversed for similar reasons.
A new test is added that tests code generation for insertelement and
extractelement for both element 0 and element 1. It is disabled in
this patch but enabled in patch 4/4, for reasons stated in the test.
llvm-svn: 223788
This optimization transforms code like:
bb1:
%0 = icmp ne i32 %a, 0
%1 = icmp ne i32 %b, 0
%or.cond = or i1 %0, %1
br i1 %or.cond, label %TrueBB, label %FalseBB
into a multiple branch instructions like:
bb1:
%0 = icmp ne i32 %a, 0
br i1 %0, label %TrueBB, label %bb2
bb2:
%1 = icmp ne i32 %b, 0
br i1 %1, label %TrueBB, label %FalseBB
This optimization is already performed by SelectionDAG, but not by FastISel.
FastISel cannot perform this optimization, because it cannot generate new
MachineBasicBlocks.
Performing this optimization at CodeGenPrepare time makes it available to both -
SelectionDAG and FastISel - and the implementation in SelectiuonDAG could be
removed. There are currenty a few differences in codegen for X86 and PPC, so
this commmit only enables it for FastISel.
Reviewed by Jim Grosbach
This fixes rdar://problem/19034919.
llvm-svn: 223786