Summary:
The following problem was occuring:
- broadcaster B had two listeners: L1 and L2 (thread T1)
- (T1) B has started to broadcast an event, it has locked a shared_ptr to L1 (in
ListenerIterator())
- on another thread T2 the penultimate reference to L1 was destroyed (the transient object in B is
now the last reference)
- (T2) the last reference to L2 was destroyed as well
- (T1) B has finished broadcasting the event to L1 and destroyed the last shared_ptr
- (T1) this triggered the destructor, which called into B->RemoveListener()
- (T1) all pointers in the m_listeners list were now stale, so RemoveListener emptied the list
- (T1) Eventually control returned to the ListenerIterator() for doing broadcasting, which was
still in the middle of iterating through the list
- (T1) Only now, it was holding onto a dangling iterator. BOOM.
I fix this issue by making sure nothing can interfere with the
iterate-and-remove-expired-pointers loop, by moving this logic into a single function, which
first locks (or clears) the whole list and then returns the list of valid and locked Listeners
for further processing. Instead of std::list I use an llvm::SmallVector which should hopefully
offset the fact that we create a copy of the list for the common case where we have only a few
listeners (no heap allocations).
A slight difference in behaviour is that now RemoveListener does not remove an element from the
list -- it only sets it's mask to 0, which means it will be removed during the next iteration of
GetListeners(). This is purely an implementation detail and it should not be externally
noticable.
I was not able to reproduce this bug reliably without inserting sleep statements into the code,
so I do not add a test for it. Instead, I add some unit tests for the functions that I do modify.
Reviewers: clayborg, jingham
Subscribers: tberghammer, lldb-commits
Differential Revision: https://reviews.llvm.org/D23406
llvm-svn: 278664
Resumbitting the commit after fixing the following problems:
- broken unit tests on windows: incorrect gtest usage on my part (TEST vs. TEST_F)
- the new code did not correctly handle the case where we went to interrupt the process, but it
stopped due to a different reason - the interrupt request would remain queued and would
interfere with the following "continue". I also added a unit test for this case.
This reapplies r277156 and r277139.
llvm-svn: 278118
This reverts commit r277139, because:
- broken unittest on windows (likely typo on my part)
- seems to break TestCallThatRestart (needs investigation)
llvm-svn: 277154
SendContinuePacketAndWaitForResponse was huge function with very complex interactions with
several other functions (SendAsyncSignal, SendInterrupt, SendPacket). This meant that making any
changes to how packet sending functions and threads interact was very difficult and error-prone.
This change does not add any functionality yet, it merely paves the way for future changes. In a
follow-up, I plan to add the ability to have multiple query packets in flight (i.e.,
request,request,response,response instead of the usual request,response sequences) and use that
to speed up qModuleInfo packet processing.
Here, I introduce two special kinds of locks: ContinueLock, which is used by the continue thread,
and Lock, which is used by everyone else. ContinueLock (atomically) sends a continue packet, and
blocks any other async threads from accessing the connection. Other threads create an instance of
the Lock object when they want to access the connection. This object, while in scope prevents the
continue from being send. Optionally, it can also interrupt the process to gain access to the
connection for async processing.
Most of the syncrhonization logic is encapsulated within these two classes. Some of it still
had to bleed over into the SendContinuePacketAndWaitForResponse, but the function is still much
more manageable than before -- partly because of most of the work is done in the ContinueLock
class, and partly because I have factored out a lot of the packet processing code separate
functions (this also makes the functionality more easily testable). Most importantly, there is
none of syncrhonization code in the async thread users -- as far as they are concerned, they just
need to declare a Lock object, and they are good to go (SendPacketAndWaitForResponse is now a
very thin wrapper around the NoLock version of the function, whereas previously it had over 100
lines of synchronization code). This will make my follow up changes there easy.
I have written a number of unit tests for the new code and I have ran the test suite on linux and
osx with no regressions.
Subscribers: tberghammer
Differential Revision: https://reviews.llvm.org/D22629
llvm-svn: 277139
Summary:
The function was returning the null pointer for peeks of size zero, which seems like a sensible
thing to do, but is actually pretty easy to get bitten by that if you are extracting a variable
length field which happens to be of zero length and then doing pointer arithmetic on that (which
SymbolFileDWARF does, and ended up crashing in case of empty DW_AT_location).
This changes the function to return a null pointer only when it gets queried for data which is
outside of the range of the extractor, which is more c++-y, as one can still do reasonable things
with pointers to data of size zero (think, end() iterators).
I also add a test and fix some signedness warnings in the existing data extractor tests.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D22755
llvm-svn: 276734
Summary: One of the cases handled by ValueObjectChild::UpdateValue() uses the entire width of the parent's scalar value as the size of the child, and extracts the child by calling Scalar::ExtractBitfield(). This seems valid but APInt::trunc(), APInt::sext() and APInt::zext() assert that the bit field must not have the same size as the parent scalar. Replacing those calls with sextOrTrunc(), zextOrTrunc(), sextOrSelf() and zextOrSelf() fixes the assertion failures.
Reviewers: uweigand, labath
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D20355
llvm-svn: 270062
Summary:
AdbClient was attempting to handle the case where the socket input arrived in pieces, but it was
failing to handle the case where the connection was closed before that happened. In this case, it
would just spin in an infinite loop calling Connection::Read. (This was also the cause of the
spurious timeouts on the darwin->android buildbot. The exact cause of the premature EOF remains
to be investigated, but is likely a server bug.)
Since this wait-for-a-certain-number-of-bytes seems like a useful functionality to have, I am
moving it (with the infinite loop fixed) to the Connection class, and adding an
appropriate test for it.
Reviewers: clayborg, zturner, ovyalov
Subscribers: tberghammer, danalbert, lldb-commits
Differential Revision: http://reviews.llvm.org/D19533
llvm-svn: 268380
Recommit modified version of r266311 including build bot regression fix.
This differs from the original r266311 by:
- Fixing Scalar::Promote to correctly zero- or sign-extend value depending
on signedness of the *source* type, not the target type.
- Omitting a few stand-alone fixes that were already committed separately.
llvm-svn: 266422
This implements a PDBASTParser and corresponding logic in
SymbolFilePDB to do type lookup by name. This is just a first
pass and leaves many aspects of type lookup unimplemented, and
just focuses on laying the framework. With this patch, you should
be able to lookup basic types by name from a PDB.
Full class definitions are not completed yet, we will instead
just return a forward declaration of the class.
Differential Revision: http://reviews.llvm.org/D18848
Reviewed by: Greg Clayton
llvm-svn: 266392
Currently, the DataExtractor::GetMaxU64Bitfield and GetMaxS64Bitfield
routines assume the incoming "bitfield_bit_offset" parameter uses
little-endian bit numbering, i.e. a bitfield_bit_offset 0 refers to
a bitfield whose least-significant bit coincides with the least-
significant bit of the surrounding integer.
On many big-endian systems, however, the big-endian bit numbering
is used for bit fields. Here, a bitfield_bit_offset 0 refers to
a bitfield whose most-significant bit conincides with the most-
significant bit of the surrounding integer.
Now, in principle LLDB could arbitrarily choose which semantics of
bitfield_bit_offset to use. However, there are two problems with
the current approach:
- When parsing DWARF, LLDB decodes bit offsets in little-endian
bit numbering on LE systems, but in big-endian bit numbering
on BE systems. Passing those offsets later on into the
DataExtractor routines gives incorrect results on BE.
- In the interim, LLDB's type layer combines byte and bit offsets
into a single number. I.e. instead of recording bitfields by
specifying the byte offset and byte size of the surrounding
integer *plus* the bit offset of the bit field within that field,
it simply records a single bit offset number.
Now, note that converting from byte offset + bit offset to a
single offset value and back is well-defined if we either use
little-endian byte order *and* little-endian bit numbering,
or use big-endian byte order *and* big-endian bit numbering.
Any other combination will yield incorrect results.
Therefore, the simplest approach would seem to be to always use
the bit numbering that matches the system byte order. This makes
storing a single bit offset valid, and makes the existing DWARF
code correct. The only place to fix is to teach DataExtractor
to use big-endian bit numbering on big endian systems.
However, there is only additional caveat: we also get bit offsets
from LLDB synthetic bitfields. While the exact semantics of those
doesn't seem to be well-defined, from test cases it appears that
the intent was for the user-provided synthetic bitfield offset to
always use little-endian bit numbering. Therefore, on a big-endian
system we now have to convert those to big-endian bit numbering
to remain consistent.
Differential Revision: http://reviews.llvm.org/D18982
llvm-svn: 266312
The Scalar implementation and a few other places in LLDB directly
access the internal implementation of APInt values using the
getRawData method. Unfortunately, pretty much all of these places
do not handle big-endian systems correctly. While on little-endian
machines, the pointer returned by getRawData can simply be used as
a pointer to the integer value in its natural format, no matter
what size, this is not true on big-endian systems: getRawData
actually points to an array of type uint64_t, with the first element
of the array always containing the least-significant word of the
integer. This means that if the bitsize of that integer is smaller
than 64, we need to add an offset to the pointer returned by
getRawData in order to access the value in its natural type, and
if the bitsize is *larger* than 64, we actually have to swap the
constituent words before we can access the value in its natural type.
This patch fixes every incorrect use of getRawData in the code base.
For the most part, this is done by simply removing uses of getRawData
in the first place, and using other APInt member functions to operate
on the integer data.
This can be done in many member functions of Scalar itself, as well
as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter,
I've had to add a Scalar::MakeUnsigned routine to parallel the existing
Scalar::MakeSigned, e.g. in order to implement an unsigned divide.
The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong
were already unused and can be simply removed. I've also removed
the Scalar::GetRawBits64 function and its few users.
The one remaining user of getRawData in Scalar.cpp is GetBytes.
I've implemented all the cases described above to correctly
implement access to the underlying integer data on big-endian
systems. GetData now simply calls GetBytes instead of reimplementing
its contents.
Finally, two places in the clang interface code were also accessing
APInt.getRawData in order to actually construct a byte representation
of an integer. I've changed those to make use of a Scalar instead,
to avoid having to re-implement the logic there.
The patch also adds a couple of unit tests verifying correct operation
of the GetBytes routine as well as the conversion routines. Those tests
actually exposed more problems in the Scalar code: the SetValueFromData
routine didn't work correctly for 128- and 256-bit data types, and the
SChar routine should have an explicit "signed char" return type to work
correctly on platforms where char defaults to unsigned.
Differential Revision: http://reviews.llvm.org/D18981
llvm-svn: 266311
Summary:
In D18689, I removed the call to Normalize() in FileSpec::SetFile, because it no longer seemed
needed, and it resolved a quirk in the FileSpec API (spec.GetCString() returnes a path with
backslashes, but spec.GetDirectory().GetCString() has forward slashes). This turned out to be a
problem because we would consider paths with different separators as different (which led to
unresolved breakpoints for instance).
Here, I am putting back in the call to Normalize() and adding a unittest for FileSpec::Equal. I
am commenting out the GetDirectory unittests until we figure out the what is the expected
behaviour here.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D19060
llvm-svn: 266286
Summary:
Even though FileSpec attempted to handle both kinds of path syntaxes (posix and windows) on both
platforms, it relied on the llvm path library to do its work, whose behavior differed on
different platforms. This led to subtle differences in FileSpec behavior between platforms. This
replaces the pieces of the llvm library with our own implementations. The functions are simply
copied from llvm, with #ifdefs replaced by runtime checks for ePathSyntaxWindows.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18689
llvm-svn: 265299
In doing so, two bugs were uncovered (and fixed). The first bug
is that ClangASTContext::RemoveFastQualifiers() was broken, and
was not removing fast qualifiers (or doing anything else for that
matter). The second bug is that UnifyAccessSpecifiers treated
AS_None asymmetrically, which is probably an edge case, but seems
like a bug nonetheless.
llvm-svn: 265200
On some versions of Windows, the address is returned as "::1", while on others it's
"0:0:...:0:1". Accept both versions, as they represent the same address.
llvm-svn: 264850
Summary:
This fixes a couple of corner cases in FileSpec, related to AppendPathComponent and
handling of root directory (/) file spec. I add a bunch of unit tests for the new behavior.
Summary of changes:
FileSpec("/bar").GetCString(): before "//bar", after "/bar".
FileSpec("/").CopyByAppendingPathComponent("bar").GetCString(): before "//bar", after "/bar".
FileSpec("C:", ePathSyntaxWindows).CopyByAppendingPathComponent("bar").GetCString(): before "C:/bar", after "C:\bar".
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18044
llvm-svn: 263207
PDB is Microsoft's debug information format, and although we
cannot yet generate it, we still must be able to consume it.
Reason for this is that debug information for system libraries
(e.g. kernel32, C Runtime Library, etc) only have debug info
in PDB format, so in order to be able to support debugging
of system code, we must support it.
Currently this code should compile on every platform, but on
non-Windows platforms the PDB plugin will return 0 capabilities,
meaning that for now PDB is only supported on Windows. This
may change in the future, but the API is designed in such a way
that this will require few (if any) changes on the LLDB side.
In the future we can just flip a switch and everything will
work.
This patch only adds support for line tables. It does not return
information about functions, types, global variables, or anything
else. This functionality will be added in a followup patch.
Differential Revision: http://reviews.llvm.org/D17363
Reviewed by: Greg Clayton
llvm-svn: 262528
Summary:
the python2 branch seems erroneous as it expected the object to be both a "String" and "Bytes".
Fix the expectation.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D17545
llvm-svn: 261901
Summary: This also fixes an infinite recursion between lldb_private::operator>> () and Scalar::operator>>= ().
Reviewers: sagar, tberghammer, labath
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D16868
Patch by Marianne Mailhot-Sarrasin
llvm-svn: 260239
65535 is still a valid port. This should fix the android failures we were getting when we chose
to connect over 65535 to the remote lldb-server.
llvm-svn: 259638
This needs to be able to handle bytes, strings, and bytearray objects.
In Python 2 this was easy because bytes and strings are the same thing,
but in Python 3 the 2 cases need to be handled separately. So as not
to mix raw Python C API code with PythonDataObjects code, I've also
introduced a PythonByteArray class to PythonDataObjects to make the
paradigm used here consistent.
llvm-svn: 258741
Primarily a trial test for me to try out the
git clang-format integration. Works like a charm!
This change adds a gtest fixture for the EditlineTest
common setup and teardown code.
llvm-svn: 258565
This is a helper class which supports a number of
features including exception to string formatting with
backtrace handling and auto-restore of exception state
upon scope exit.
Additionally, unit tests are included to verify the
feature set of the class.
llvm-svn: 252994
This allows other potential unit test suites (of which one is
forthcoming in a subsequent patch) to re-use the same initialization
and teardown of the GIL.
llvm-svn: 252993
This adds PythonTuple and PythonCallable classes to PythonDataObjects.
Additionally, unit tests are provided that exercise this functionality,
including invoking manipulating and checking for validity of tuples,
and invoking and checking for validity of callables using a variety
of different syntaxes.
The goal here is to eventually replace the code in python-wrapper.swig
that directly uses the Python C API to deal with callables and name
resolution with this code that can be more easily tested and debugged.
llvm-svn: 252787
The Go interpreter doesn't JIT or use LLVM, so this also
moves all the JIT related code from UserExpression to a new class LLVMUserExpression.
Differential Revision: http://reviews.llvm.org/D13073
Fix merge
llvm-svn: 251820
These are two simple tests that make sure single line and
multiline content are processed and received by Editline.cpp.
Fancier tests to come...
llvm-svn: 251681
Also added a placeholder Editline gtest for some code that I'll add as soon
as I make sure this addition doesn't break any of the build bots.
This change also introduces some Xcode user-defined variables that I've used
to attempt to isolate the way Python is integrated into the build. I don't have
the rest of LLDB using it yet, I'm using the gtests as my guinea pig on that.
Currently these are:
PYTHON_FRAMEWORK_PATH
PYTHON_VERSION_MAJOR
PYTHON_VERSION_MINOR
I will convert the rest over to it after this gets a little time to bake
and any kinks are worked out of it.
llvm-svn: 251261
The purpose of the class is to make it easy to execute tasks in parallel
Basic design goals:
* Have a very lightweight and easy to use interface where a list of
lambdas can be executed in parallel
* Use a global thread pool to limit the number of threads used
(std::async don't do it on Linux) and to eliminate the thread creation
overhead
* Destroy the thread currently not in use to avoid the confusion caused
by them during debugging LLDB
Possible future improvements:
* Possibility to cancel already added, but not yet started tasks
* Parallel for_each implementation
* Optimizations in the thread creation destroyation code
Differential revision: http://reviews.llvm.org/D13727
llvm-svn: 250820
Python file handling got an overhaul in Python 3, and it affects
the way we have to interact with files. Notably:
1) `PyFile_FromFile` no longer exists, and instead we have to use
`PyFile_FromFd`. This means having a way to get an fd from
a FILE*. For this we reuse the lldb_private::File class to
convert between FILE*s and fds, since there are some subtleties
regarding ownership rules when FILE*s and fds refer to the same
file.
2) PyFile is no longer a builtin type, so there is no such thing as
`PyFile_Check`. Instead, files in Python 3 are just instances
of `io.IOBase`. So the logic for checking if something is a file
in Python 3 is to check if it is a subclass of that module.
Additionally, some unit tests are added to verify that `PythonFile`
works as expected on Python 2 and Python 3, and
`ScriptInterpreterPython` is updated to use `PythonFile` instead of
manual calls to the various `PyFile_XXX` methods.
llvm-svn: 250444
There were a couple of issues related to string handling that
needed to be fixed. In particular, we cannot get away with
converting `PyUnicode` objects to `PyBytes` objects and storing
the `PyBytes` regardless of Python version. Instead we have to
store a `PyUnicode` on Python 3 and a `PyString` on Python 2.
The reason for this is that if you call `PyObject_Str` on a
`PyBytes` in Python 3, it will return you a string that actually
contains the string value wrappedin the characters b''. So if we
create a `PythonString` with the value "test", and we call Str()
on it, we will get back the string "b'test'", which breaks string
equality. The only way to fix this is to store a native
`PyUnicode` object under Python 3.
With this CL, ScriptInterpreterPythonTests unit tests pass 100%
under Python 2 and Python 3.
llvm-svn: 250327
PythonObjects were being incorrectly ref-counted. This problem was
pervasive throughout the codebase, leading to an unknown number of memory
leaks and potentially use-after-free.
The issue stems from the fact that Python native methods can either return
"borrowed" references or "owned" references. For the former category, you
*must* incref it prior to decrefing it. And for the latter category, you
should not incref it before decrefing it. This is mostly an issue when a
Python C API method returns a `PyObject` to you, but it can also happen with
a method accepts a `PyObject`. Notably, this happens in `PyList_SetItem`,
which is documented to "steal" the reference that you give it. So if you
pass something to `PyList_SetItem`, you cannot hold onto it unless you
incref it first. But since this is one of only two exceptions in the
entire API, it's confusing and difficult to remember.
Our `PythonObject` class was indiscriminantely increfing every object it
received, which means that if you passed it an owned reference, you now
have a dangling reference since owned references should not be increfed.
We were doing this in quite a few places.
There was also a fair amount of manual increfing and decrefing prevalent
throughout the codebase, which is easy to get wrong.
This patch solves the problem by making any construction of a
`PythonObject` from a `PyObject` take a flag which indicates whether it is
an owned reference or a borrowed reference. There is no way to construct a
`PythonObject` without this flag, and it does not offer a default value,
forcing the user to make an explicit decision every time.
All manual uses of `PyObject` have been cleaned up throughout the codebase
and replaced with `PythonObject` in order to make RAII the predominant
pattern when dealing with native Python objects.
Differential Revision: http://reviews.llvm.org/D13617
Reviewed By: Greg Clayton
llvm-svn: 250195
With this change, liblldb is 95% of the way towards being able
to work under both Python 2.x and Python 3.x. This should
introduce no functional change for Python 2.x, but for Python
3.x there are some important changes. Primarily, these are:
1) PyString doesn't exist in Python 3. Everything is a PyUnicode.
To account for this, PythonString now stores a PyBytes instead
of a PyString. In Python 2, this is equivalent to a PyUnicode,
and in Python 3, we do a conversion from PyUnicode to PyBytes
and store the PyBytes.
2) PyInt doesn't exist in Python 3. Everything is a PyLong. To
account for this, PythonInteger stores a PyLong instead of a
PyInt. In Python 2.x, this requires doing a conversion to
PyLong when creating a PythonInteger from a PyInt. In 3.x,
there is no PyInt anyway, so we can assume everything is a
PyLong.
3) PyFile_FromFile doesn't exist in Python 3. Instead there is a
PyFile_FromFd. This is not addressed in this patch because it
will require quite a large change to plumb fd's all the way
through the system into the ScriptInterpreter. This is the only
remaining piece of the puzzle to get LLDB supporting Python 3.x.
Being able to run the test suite is not addressed in this patch.
After the extension module can compile and you can enter an embedded
3.x interpreter, the test suite will be addressed in a followup.
llvm-svn: 249886
Summary:
When `module_spec.GetFileSpec().GetDirectory().AsCString()` returned a `nullptr` this line caused a segmentation fault:
`std::string module_directory = module_spec.GetFileSpec().GetDirectory().AsCString()`
Some context:
I was remote debugging an executable built with Clang in an Ubuntu VM on my Windows machine using lldb-mi. I copied the executable and nothing else from the Ubuntu VM to the Windows machine.
Then started lldb-server in the Ubuntu VM:
```
./bin/lldb-server gdbserver *:8888 -- /home/enlight/Projects/dbgmits/build/Debug/data_tests_target
```
And ran `lldb-mi --interpreter` on Windows with the following commands:
```
-file-exec-and-symbols C:\Projects\data_tests_target
-target-select remote 192.168.56.101:8888
-exec-continue
```
After which the segmentation fault occurred at the aforementioned line. Inside this method `module_spec.GetFileSpec()` returns an empty `FileSpec` (no dir, no filename), while `module_spec.GetSymbolFileSpec().GetFilename()` returns `"libc-2.19.so"`.
Patch thanks to Vadim Macagon.
Reviewers: brucem, zturner, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13201
llvm-svn: 249387
Previously embedded interpreters were handled as ad-hoc source
files compiled into source/Interpreter. This made it hard to
disable a specific interpreter, or to add support for other
interpreters and allow the developer to choose which interpreter(s)
were enabled for a particular build.
This patch converts script interpreters over to a plugin-based system.
Script interpreters now live in source/Plugins/ScriptInterpreter, and
the canonical LLDB interpreter, ScriptInterpreterPython, is moved there
as well.
Any new code interfacing with the Python C API must live in this location
from here on out. Additionally, generic code should never need to
reference or make assumptions about the presence of a specific interpreter
going forward.
Differential Revision: http://reviews.llvm.org/D11431
Reviewed By: Greg Clayton
llvm-svn: 243681
Summary:
Fix StringExtractor.h issues.
* source/Plugins/Process/MacOSX-Kernel/ProcessKDP.cpp
(#include "Utility/StringExtractor.h): Not needed, this is already
included by ProcessKDP.h
* unittests/Utility/StringExtractorTest.cpp
(#include "Utility/StringExtractor.h): Update include path to the
new location.
Reviewers: labath, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D10995
llvm-svn: 241596
Summary:
Since all TSC operations are now executed synchronously, TSC has become a little more than a
messenger between different parts of NativeProcessLinux. Therefore, the reason for its existance
has disappeared.
This commit moves the contents of the TSC into the NPL class. This will enable us to remove all
the boilerplate code in NPL (as it stands now, this is most of the class), which I plan to do in
subsequent commits.
Unfortunately, this also means we will lose the unit tests for the TSC. However, since the size
of the TSC has diminished, the unit tests were not testing much at this point anyway, so it's not
a big loss.
No functional change.
Test Plan: All tests continue to pass.
Reviewers: vharron, chaoren
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9296
llvm-svn: 236587
Summary:
This change removes the thread state coordinator thread by making all the operations it was
performing synchronous. In order to prevent deadlock, NativeProcessLinux must now always call
m_monitor->DoOperation with the m_threads_mutex released. This is needed because HandleWait
callbacks lock the mutex (which means the monitor thread will block waiting on whoever holds the
lock). If the other thread now requests a monitor operation, it will wait for the monitor thread
do process it, creating a deadlock.
To preserve this invariant I have introduced two new Monitor commands: "begin operation block"
and "end operation block". They begin command blocks the monitor from processing waitpid
events until the corresponding end command, thereby assuring the monitor does not attempt to
acquire the mutex.
Test Plan: Run the test suite locally, verify no tests fail.
Reviewers: vharron, chaoren
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9227
llvm-svn: 236501
Summary:
Currently, linking of the unittests fails on linux because it is missing a bunch of symbols from
libedit, curses, etc. This fixes the build by adding the correct dependencies.
Test Plan: Linking works, unit tests run.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9244
llvm-svn: 235853
The order of libraries passed to the linker didn't work under linux (you
need the llvm libraries first, then the lldb libraries). I modelled this
after clang's setup here. Seemed simple enough to just be consistent.
llvm-svn: 232461
A recent refactor had introduced a bug where if you escaped a
character, the rest of the string would get processed incorrectly.
This patch fixes that bug and adds some unit tests for Args.
llvm-svn: 232288
Sigh. There's really not a good alternative until we decouple
python from lldb better. The only way the build works right now
is by having every executable link against every LLDB library.
This causes implicit transitive link dependencies on the union
of everything that LLDB brings in. Which means that if all we
want is one header file from interpreter, we have to bring in
everything, including everything that everything depends on,
which means python.
There's outstanding efforts to address this, but it's not yet
complete. So until then, this is all we can do.
llvm-svn: 232287
On Windows, you need to call WSAStartup() before making any socket
calls, and WSACleanup() before you shutdown. This wasn't being
done, so all of the socket tests were failing. This fixes
that, which brings the unit test suite to a fully working state
on Windows.
llvm-svn: 232247
This makes the directory structure mirror the canonical LLVM
directory structure for a gtest suite.
Additionally, this patch deletes the xcode project. Nobody
is currently depending on this, and it would be better to have
gtest unit tests be hand-maintained in the Xcode workspace
rather than using this python test runner. Patches to that
effect will be submitted as followups.
llvm-svn: 232211