There are 3 symbol types that a .bc can provide during lto: defined,
undefined, common.
Defined and undefined symbols have already been refactored. I was
working on common and noticed that absolute symbols would become an
oddity: They would be the only symbol type present in a .o but not in
a.bc.
Looking a bit more, other than the special section number they were only
used for special rules for computing values. In that way they are
similar to TLS, and we don't have a DefinedTLS.
This patch deletes it. With it we have a reasonable rule of the thumb
for having a symbol kind: It exists if it has special resolution
semantics.
llvm-svn: 256383
In FreeBSD, rtld expects .ctors containing -1 (0xffffffff), and a
.ctors section containing the correct bits is provided to the linker as
input (/usr/lib/crtbegin.o).
Contents of section .ctors:
0000 ffffffff ffffffff ........
This section is not stripped even if not referenced or empty, also in
gold or ld.bfd. It would be nice to strip it when not needed but
since existing object files rely on that we can't do better to keep it
around.
Differential Revision: http://reviews.llvm.org/D15767
llvm-svn: 256373
.eh_frame sections need to be preserved if they refer to live sections.
So the liveness relation is reverse for eh_frame sections. For now,
we simply preserve all .eh_frame sections. Thanks Rafael for pointing
this out. .jcr are kept for the same reason.
llvm-svn: 251068
Section garbage collection is a feature to remove unused sections
from outputs. Unused sections are sections that cannot be reachable
from known GC-root symbols or sections. Naturally the feature is
implemented as a mark-sweep garbage collector.
In this patch, I added Live bit to InputSectionBase. If and only
if Live bit is on, the section will be written to the output.
Starting from GC-root symbols or sections, a new function, markLive(),
visits all reachable sections and sets their Live bits. Writer then
ignores sections whose Live bit is off, so that such sections are
excluded from the output.
This change has small negative impact on performance if you use
the feature because making sections means more work. The time to
link Clang changes from 0.356s to 0.386s, or +8%.
It reduces Clang size from 57,764,984 bytes to 55,296,600 bytes.
That is 4.3% reduction.
http://reviews.llvm.org/D13950
llvm-svn: 251043