Hidden visibility is almost the opposite of dllimport. We were
producing them before (dllimport wins in the existing llvm
implementation), but now the llvm verifier produces an error.
llvm-svn: 323361
This is to fix the bug reported in https://bugs.llvm.org/show_bug.cgi?id=34347#c6.
Currently, all MaxAtomicInlineWidth of x86-32 targets are set to 64. However,
i386 doesn't support any cmpxchg related instructions. i486 only supports cmpxchg.
So in this patch MaxAtomicInlineWidth is reset as follows:
For i386, the MaxAtomicInlineWidth should be 0 because no cmpxchg is supported.
For i486, the MaxAtomicInlineWidth should be 32 because it supports cmpxchg.
For others 32 bits x86 cpu, the MaxAtomicInlineWidth should be 64 because of cmpxchg8b.
Differential Revision: https://reviews.llvm.org/D42154
llvm-svn: 323281
When a function taking transparent union is declared as taking one of
union members earlier in the translation unit, clang would hit an
"Invalid cast" assertion during EmitFunctionProlog. This case
corresponds to function f1 in test/CodeGen/transparent-union-redecl.c.
We decided to cast i32 to union because after merging function
declarations function parameter type becomes int,
CGFunctionInfo::ArgInfo type matches with ABIArgInfo type, so we decide
it is a trivial case. But these types should also be castable to
parameter declaration type which is not the case here.
Now the fix is in converting from ABIArgInfo type to VarDecl type and using
argument demotion when necessary.
Additional tests in Sema/transparent-union.c capture current behavior and make
sure there are no regressions.
rdar://problem/34949329
Reviewers: rjmccall, rafael
Reviewed By: rjmccall
Subscribers: aemerson, cfe-commits, kristof.beyls, ahatanak
Differential Revision: https://reviews.llvm.org/D41311
llvm-svn: 323156
Summary:
Upstream LLVM is changing the the prototypes of the @llvm.memcpy/memmove/memset
intrinsics. This change updates the Clang tests for this change.
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change removes the alignment argument in favour of placing the alignment
attribute on the source and destination pointers of the memory intrinsic call.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
At this time the source and destination alignments must be the same (Step 1).
Step 2 of the change, to be landed shortly, will relax that contraint and allow
the source and destination to have different alignments.
llvm-svn: 322964
The standard says:
[expr.static.cast] p11: "If the prvalue of type “pointer to cv1 B” points to a B
that is actually a subobject of an object of type D, the resulting pointer points
to the enclosing object of type D. Otherwise, the behavior is undefined."
Therefore, the GEP must be inbounds.
This should solve the failure to optimize away a null check shown in PR35909:
https://bugs.llvm.org/show_bug.cgi?id=35909
Differential Revision: https://reviews.llvm.org/D42249
llvm-svn: 322950
InitListExprs without types (well, with type 'void') represent not-yet-analyzed
initializer lists; InitListExpr with types fool Sema into thinking they don't
need further analysis in some cases (particularly C++17 copy omission).
llvm-svn: 322414
While updating clang tests for having clang set dso_local I noticed
that:
- There are *a lot* of tests to update.
- Many of the updates are redundant.
They are redundant because a GV is "obviously dso_local". This patch
starts formalizing that a bit by requiring that internal and private
GVs be dso_local too. Since they all are, we don't have to print
dso_local to the textual representation, making it a bit more compact
and easier to read.
llvm-svn: 322318
Summary:
Enable the compile-time flag -fsanitize-memory-use-after-dtor by
default. Note that the run-time option MSAN_OPTIONS=poison_in_dtor=1
still needs to be enabled for destructors to be poisoned.
Reviewers: eugenis, vitalybuka, kcc
Reviewed By: eugenis, vitalybuka
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D37860
llvm-svn: 322221
GCC's attribute 'target', in addition to being an optimization hint,
also allows function multiversioning. We currently have the former
implemented, this is the latter's implementation.
This works by enabling functions with the same name/signature to coexist,
so that they can all be emitted. Multiversion state is stored in the
FunctionDecl itself, and SemaDecl manages the definitions.
Note that it ends up having to permit redefinition of functions so
that they can all be emitted. Additionally, all versions of the function
must be emitted, so this also manages that.
Note that this includes some additional rules that GCC does not, since
defining something as a MultiVersion function after a usage has been made illegal.
The only 'history rewriting' that happens is if a function is emitted before
it has been converted to a multiversion'ed function, at which point its name
needs to be changed.
Function templates and virtual functions are NOT yet supported (not supported
in GCC either).
Additionally, constructors/destructors are disallowed, but the former is
planned.
llvm-svn: 322028
This implements the DWARF 5 feature described at
http://www.dwarfstd.org/ShowIssue.php?issue=141215.1
This allows a consumer to understand whether a composite data type is
trivially copyable and thus should be passed by value instead of by
reference. The canonical example is being able to distinguish the
following two types:
// S is not trivially copyable because of the explicit destructor.
struct S {
~S() {}
};
// T is a POD type.
struct T {
~T() = default;
};
<rdar://problem/36034993>
Differential Revision: https://reviews.llvm.org/D41039
llvm-svn: 321845
...when such an operation is done on an object during con-/destruction.
This is the cfe part of a patch covering both cfe and compiler-rt.
Differential Revision: https://reviews.llvm.org/D40295
llvm-svn: 321519
When a function taking transparent union is declared as taking one of
union members earlier in the translation unit, clang would hit an
"Invalid cast" assertion during EmitFunctionProlog. This case
corresponds to function f1 in test/CodeGen/transparent-union-redecl.c.
We decided to cast i32 to union because after merging function
declarations function parameter type becomes int,
CGFunctionInfo::ArgInfo type matches with ABIArgInfo type, so we decide
it is a trivial case. But these types should also be castable to
parameter declaration type which is not the case here.
The fix is in checking for the trivial case if ABIArgInfo type matches with
parameter declaration type. It exposed inconsistency that we check
hasScalarEvaluationKind for different types in EmitParmDecl and
EmitFunctionProlog, and comment says they should match.
Additional tests in Sema/transparent-union.c capture current behavior and make
sure there are no regressions.
rdar://problem/34949329
Reviewers: rjmccall, rafael
Reviewed By: rjmccall
Subscribers: aemerson, cfe-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D41311
llvm-svn: 321296
Diagnose 'unreachable' UB when a noreturn function returns.
1. Insert a check at the end of functions marked noreturn.
2. A decl may be marked noreturn in the caller TU, but not marked in
the TU where it's defined. To diagnose this scenario, strip away the
noreturn attribute on the callee and insert check after calls to it.
Testing: check-clang, check-ubsan, check-ubsan-minimal, D40700
rdar://33660464
Differential Revision: https://reviews.llvm.org/D40698
llvm-svn: 321231
Adding the new enumerator forced a bunch more changes into this patch than I
would have liked. The -Wtautological-compare warning was extended to properly
check the new comparison operator, clang-format needed updating because it uses
precedence levels as weights for determining where to break lines (and several
operators increased their precedence levels with this change), thread-safety
analysis needed changes to build its own IL properly for the new operator.
All "real" semantic checking for this operator has been deferred to a future
patch. For now, we use the relational comparison rules and arbitrarily give
the builtin form of the operator a return type of 'void'.
llvm-svn: 320707
Under the Microsoft ABI, it is possible for an object not to have
a virtual table pointer of its own if all of its virtual functions
were introduced by virtual bases. In that case, we need to load the
vtable pointer from one of the virtual bases and perform the type
check using its type.
Differential Revision: https://reviews.llvm.org/D41036
llvm-svn: 320638
This commit fixes a bug in IRGen where it generates completely broken
code for __fp16 vectors on X86. For example when the following code is
compiled:
half4 hv0, hv1, hv2; // these are vectors of __fp16.
void foo221() {
hv0 = hv1 + hv2;
}
clang generates the following IR, in which two i16 vectors are added:
@hv1 = common global <4 x i16> zeroinitializer, align 8
@hv2 = common global <4 x i16> zeroinitializer, align 8
@hv0 = common global <4 x i16> zeroinitializer, align 8
define void @foo221() {
%0 = load <4 x i16>, <4 x i16>* @hv1, align 8
%1 = load <4 x i16>, <4 x i16>* @hv2, align 8
%add = add <4 x i16> %0, %1
store <4 x i16> %add, <4 x i16>* @hv0, align 8
ret void
}
To fix the bug, this commit uses the code committed in r314056, which
modified clang to promote and truncate __fp16 vectors to and from float
vectors in the AST. It also fixes another IRGen bug where a short value
is assigned to an __fp16 variable without any integer-to-floating-point
conversion, as shown in the following example:
__fp16 a;
short b;
void foo1() {
a = b;
}
@b = common global i16 0, align 2
@a = common global i16 0, align 2
define void @foo1() #0 {
%0 = load i16, i16* @b, align 2
store i16 %0, i16* @a, align 2
ret void
}
rdar://problem/20625184
Differential Revision: https://reviews.llvm.org/D40112
llvm-svn: 320215
whether they have an initializer.
We cannot distinguish between a declaration of a variable template
specialization and a definition of one that lacks an initializer without this,
and would previously mistake the latter for the former.
llvm-svn: 319605
This matches MSVC's behaviour, and we already do it for class templates
since r270897.
Differential revision: https://reviews.llvm.org/D40621
llvm-svn: 319386
Fixes regression introduced by r319297. MSVC environments still use SEH
unwind opcodes but they should use the Microsoft C++ EH personality, not
the mingw one.
llvm-svn: 319363
This is a re-apply of r319294.
adds -fseh-exceptions and -fdwarf-exceptions flags
clang will check if the user has specified an exception model flag,
in the absense of specifying the exception model clang will then check
the driver default and append the model flag for that target to cc1
-fno-exceptions has a higher priority then specifying the model
move __SEH__ macro definitions out of Targets into InitPreprocessor
behind the -fseh-exceptions flag
move __ARM_DWARF_EH__ macrodefinitions out of verious targets and into
InitPreprocessor behind the -fdwarf-exceptions flag and arm|thumb check
remove unused USESEHExceptions from the MinGW Driver
fold USESjLjExceptions into a new GetExceptionModel function that
gives the toolchain classes more flexibility with eh models
Reviewers: rnk, mstorsjo
Differential Revision: https://reviews.llvm.org/D39673
llvm-svn: 319297
adds -fseh-exceptions and -fdwarf-exceptions flags
clang will check if the user has specified an exception model flag,
in the absense of specifying the exception model clang will then check
the driver default and append the model flag for that target to cc1
clang cc1 assumes dwarf is the default if none is passed
and -fno-exceptions has a higher priority then specifying the model
move __SEH__ macro definitions out of Targets into InitPreprocessor
behind the -fseh-exceptions flag
move __ARM_DWARF_EH__ macrodefinitions out of verious targets and into
InitPreprocessor behind the -fdwarf-exceptions flag and arm|thumb check
remove unused USESEHExceptions from the MinGW Driver
fold USESjLjExceptions into a new GetExceptionModel function that
gives the toolchain classes more flexibility with eh models
Reviewers: rnk, mstorsjo
Differential Revision: https://reviews.llvm.org/D39673
llvm-svn: 319294
Summary:
This raises __STDCPP_DEFAULT_NEW_ALIGNMENT__ from 8 to 16 on Win64.
This matches platforms that follow the usual `2 * sizeof(void*)`
alignment requirement for malloc. We might want to consider making that
the default rather than relying on long double alignment.
Fixes PR35356
Reviewers: STL_MSFT, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D40277
llvm-svn: 318723
explicitly instantiated, still emit it with each use.
We don't emit a definition of the member with an explicit instantiation
definition (and indeed it appears that we're not allowed to, since an explicit
instantiation definition does not constitute an odr-use and only odr-use
permits definition for defaulted special members). So we still need to emit a
weak definition with each use.
This also makes defaulted-in-class declarations behave more like
implicitly-declared special members, which matches their design intent.
And it matches the way this problem was solved in GCC.
llvm-svn: 318474
Summary:
The MS ABI convention is that the 'this' pointer on entry is the address
of the vfptr that was used to make the virtual method call. In other
words, the pointer on entry always points to the base subobject that
introduced the virtual method. Consider this hierarchy:
struct A { virtual void f() = 0; };
struct B { virtual void g() = 0; };
struct C : A, B {
void f() override;
void g() override;
};
On entry to C::g, [ER]CX will contain the address of C's B subobject,
and C::g will have to subtract sizeof(A) to recover a pointer to C.
Before this change, we applied this adjustment in the prologue and
stored the new value into the "this" local variable alloca used for
debug info. However, MSVC does not do this, presumably because it is
often profitable to fold the adjustment into later field accesses. This
creates a problem, because the debugger expects the variable to be
unadjusted. Unfortunately, CodeView doesn't have anything like DWARF
expressions for computing variables that aren't in the program anymore,
so we have to declare 'this' to be the unadjusted value if we want the
debugger to see the right value.
This has the side benefit that, in optimized builds, the 'this' pointer
will usually be available on function entry because it doesn't require
any adjustment.
Reviewers: hans
Subscribers: aprantl, cfe-commits
Differential Revision: https://reviews.llvm.org/D40109
llvm-svn: 318440
On e.g. PPC the return value and argument were marked 'signext'. This
makes the test expectations a bit more flexible.
Follow-up to r318199.
llvm-svn: 318214
This updates -mcount to use the new attribute names (LLVM r318195), and
switches over -finstrument-functions to also use these attributes rather
than inserting instrumentation in the frontend.
It also adds a new flag, -finstrument-functions-after-inlining, which
makes the cygprofile instrumentation get inserted after inlining rather
than before.
Differential Revision: https://reviews.llvm.org/D39331
llvm-svn: 318199
GNU frontends don't have options like /MT, /MD
This fixes a few link error regressions with libc++ and libc++abi
Reviewers: rnk, mstorsjo, compnerd
Differential Revision: https://reviews.llvm.org/D33620
llvm-svn: 317398
Added support for regcall as default calling convention. Also added code to
exclude main when applying default calling conventions.
Patch-By: eandrews
Differential Revision: https://reviews.llvm.org/D39210
llvm-svn: 317268
The cloning happens before all metadata nodes are resolved. Prevent the value
mapper from running into unresolved or temporary MD nodes.
Differential Revision: https://reviews.llvm.org/D39396
llvm-svn: 317047
Summary:
This change allows generalizing pointers in type signatures used for
cfi-icall by enabling the -fsanitize-cfi-icall-generalize-pointers flag.
This works by 1) emitting an additional generalized type signature
metadata node for functions and 2) llvm.type.test()ing for the
generalized type for translation units with the flag specified.
This flag is incompatible with -fsanitize-cfi-cross-dso because it would
require emitting twice as many type hashes which would increase artifact
size.
Reviewers: pcc, eugenis
Reviewed By: pcc
Subscribers: kcc
Differential Revision: https://reviews.llvm.org/D39358
llvm-svn: 317044
For non-zero alloca addr space, alloca is usually casted to default addr
space immediately.
For non-vla, alloca is inserted at AllocaInsertPt, therefore the addr
space cast should also be insterted at AllocaInsertPt. However,
for vla, alloca is inserted at the current insertion point of IRBuilder,
therefore the addr space cast should also inserted at the current
insertion point of IRBuilder.
Currently clang always insert addr space cast at AllocaInsertPt, which
causes invalid IR.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D39374
llvm-svn: 316909
OpaqueValueExpr in a GNU binary conditional expression.
It's not meaningful for a non-materialized temporary object to be used as a
common subexpression of multiple expressions.
llvm-svn: 316836
Summary:
Clang typically warns that in the following class hierarchy, 'A' is
inaccessible because there is no series of casts that the user can
write to access it unambiguously:
struct A { };
struct B : A { };
struct C : A, B { };
MSVC allows the user to convert from C* to A*, though, and we've
encountered this issue in the latest Windows SDK headers.
This patch allows this conversion when -fms-compatibility is set and
adds a warning for it under -Wmicrosoft-inaccessible-base.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D39389
llvm-svn: 316807
Fastcall doesn't support variadic function calls, so
setting the default calling convention to Fastcall would
result in incorrect code being emitted for these conditions.
This patch adds a 'variadic' test to the default calling conv
test, as well as fixes the behavior of fastcall.
llvm-svn: 316528
instantiation declarations if they are usable from constant expressions.
We are permitted to instantiate in these cases, and required to do so in order
to have an initializer available for use within constant evaluation.
llvm-svn: 316136
Currently all the consecutive bitfields are wrapped as a large integer unless there is unamed zero sized bitfield in between. The patch provides an alternative manner which makes the bitfield to be accessed as separate memory location if it has legal integer width and is naturally aligned. Such separate bitfield may split the original consecutive bitfields into subgroups of consecutive bitfields, and each subgroup will be wrapped as an integer. Now This is all controlled by an option -ffine-grained-bitfield-accesses. The alternative of bitfield access manner can improve the access efficiency of those bitfields with legal width and being aligned, but may reduce the chance of load/store combining of other bitfields, so it depends on how the bitfields are defined and actually accessed to choose when to use the option. For now the option is off by default.
Differential revision: https://reviews.llvm.org/D36562
llvm-svn: 315915
The function sanitizer only checks indirect calls through function
pointers. This excludes all non-static member functions (constructor
calls, calls through thunks, etc. all use a separate code path). Don't
emit function signatures for functions that won't be checked.
Apart from cutting down on code size, this should fix a regression on
Linux caused by r313096. For context, see the mailing list discussion:
r313096 - [ubsan] Function Sanitizer: Don't require writable text segments
Testing: check-clang, check-ubsan
Differential Revision: https://reviews.llvm.org/D38913
llvm-svn: 315786
This feature is not (yet) approved by the C++ committee, so this is liable to
be reverted or significantly modified based on committee feedback.
No functionality change intended for existing code (a new type must be defined
in namespace std to take advantage of this feature).
llvm-svn: 315662
Fix PR32990 by effectively reverting r283063 and solving it a different
way.
We want to limit the hack to not replace equivalent available_externally
dtors specifically to libc++, which uses always_inline. It seems certain
versions of libc++ do not provide all the symbols that an explicit
template instantiation is expected to provide.
If we get to the code that forms a real alias, only *then* check if this
is available_externally, and do that by asking a better question, which
is "is this a declaration for the linker?", because *that's* what means
we can't form an alias to it.
As a follow-on simplification, remove the InEveryTU parameter. Its last
use guarded this code for forming aliases, but we should never form
aliases to declarations, regardless of what we know about every TU.
llvm-svn: 315656
This is a re-commit of r315025, but making sure to only apply this to
specializations of class template member functions; i.e. not when the function
itself is a template.
llvm-svn: 315330
Don't emit alignment checks which the IR constant folder throws away.
I've tested this out on X86FastISel.cpp. While this doesn't decrease
end-to-end compile-time significantly, it results in 122 fewer type
checks (1% reduction) overall, without adding any real complexity.
Differential Revision: https://reviews.llvm.org/D37544
llvm-svn: 314752
to have child entries describing the template parameters. This will
be on by default for SCE tuning.
Differential Revision: https://reviews.llvm.org/D14358
llvm-svn: 314444
Summary:
This is the follow-up patch to D37924.
This change refactors clang to use the the newly added section headers
in SpecialCaseList to specify which sanitizers blacklists entries
should apply to, like so:
[cfi-vcall]
fun:*bad_vcall*
[cfi-derived-cast|cfi-unrelated-cast]
fun:*bad_cast*
The SanitizerSpecialCaseList class has been added to allow querying by
SanitizerMask, and SanitizerBlacklist and its downstream users have been
updated to provide that information. Old blacklists not using sections
will continue to function identically since the blacklist entries will
be placed into a '[*]' section by default matching against all
sanitizers.
Reviewers: pcc, kcc, eugenis, vsk
Reviewed By: eugenis
Subscribers: dberris, cfe-commits, mgorny
Differential Revision: https://reviews.llvm.org/D37925
llvm-svn: 314171
This is to fix PR34347. EmitAtomicExpr now only uses alignment information from
Type, instead of Decl, so when the declaration of an atomic variable is marked
to have the alignment equal as its size, EmitAtomicExpr doesn't know about it and
will generate libcall instead of atomic op. The patch uses EmitPointerWithAlignment
to get the precise alignment information.
Differential Revision: https://reviews.llvm.org/D37310
llvm-svn: 314145
This doesn't affect our code generation in any material way -- we already give
such declarations internal linkage from a codegen perspective -- but it has
some subtle effects on code validity.
We suppress the 'L' (internal linkage) marker for mangled names in anonymous
namespaces, because it is redundant (the information is already carried by the
namespace); this deviates from GCC's behavior if a variable or function in an
anonymous namespace is redundantly declared 'static' (where GCC does include
the 'L'), but GCC's behavior is incoherent because such a declaration can be
validly declared with or without the 'static'.
We still deviate from the standard in one regard here: extern "C" declarations
in anonymous namespaces are still granted external linkage. Changing those does
not appear to have been an intentional consequence of the standard change in
DR1113.
llvm-svn: 314037
This is to fix PR31620. MaxAtomicInlineWidth is set to 128 for x86_64. However
for target without cx16 support, 128 atomic operation will generate __sync_*
libcalls. The patch set MaxAtomicInlineWidth to 64 if the target doesn't support
cx16.
Differential Revision: https://reviews.llvm.org/D38046
llvm-svn: 313992
This implements the proposed approach in https://github.com/itanium-cxx-abi/cxx-abi/issues/33
This reinstates r313827, reverted in r313856, with a fix for the 'out-of-bounds
enumeration value' ubsan error in that change.
llvm-svn: 313955
If a function or variable has a type with no linkage (and is not extern "C"),
any use of it requires a definition within the same translation unit; the idea
is that it is not possible to define the entity elsewhere, so any such use is
necessarily an error.
There is an exception, though: some types formally have no linkage but
nonetheless can be referenced from other translation units (for example, this
happens to anonymous structures defined within inline functions). For entities
with those types, we suppress the diagnostic except under -pedantic.
llvm-svn: 313729
This reverts commit r313722.
It looks like compiler-rt/lib/tsan/rtl/tsan_libdispatch_mac.cc cannot be
compiled because some of the functions declared in the file do not match
the ones in the SDK headers (which are annotated with 'noescape').
llvm-svn: 313725
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32210
llvm-svn: 313722
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32520
llvm-svn: 313720
Summary:
To improve CodeView quality for static member functions, we need to make the
static explicit. In addition to a small change in LLVM's CodeViewDebug to
return the appropriate MethodKind, this requires a small change in Clang to
note the staticness in the debug info metadata.
Subscribers: aprantl, hiraditya
Differential Revision: https://reviews.llvm.org/D37715
llvm-svn: 313192
This change will make it possible to use -fsanitize=function on Darwin and
possibly on other platforms. It fixes an issue with the way RTTI is stored into
function prologue data.
On Darwin, addresses stored in prologue data can't require run-time fixups and
must be PC-relative. Run-time fixups are undesirable because they necessitate
writable text segments, which can lead to security issues. And absolute
addresses are undesirable because they break PIE mode.
The fix is to create a private global which points to the RTTI, and then to
encode a PC-relative reference to the global into prologue data.
Differential Revision: https://reviews.llvm.org/D37597
llvm-svn: 313096
Summary:
Microsoft Visual Studio expects debug locations to correspond to
statements. We used to emit locations for expressions nested inside statements.
This would confuse the debugger, causing it to stop multiple times on the
same line and breaking the "step into specific" feature. This change inhibits
the emission of debug locations for nested expressions when emitting CodeView
debug information, unless column information is enabled.
Fixes PR34312.
Reviewers: rnk, zturner
Reviewed By: rnk
Subscribers: majnemer, echristo, aprantl, cfe-commits
Differential Revision: https://reviews.llvm.org/D37529
llvm-svn: 312965
This is to fix PR34347. EmitAtomicExpr now only uses alignment information from
Type, instead of Decl, so when the declaration of an atomic variable is marked
to have the alignment equal as its size, EmitAtomicExpr doesn't know about it and
will generate libcall instead of atomic op. The patch uses EmitPointerWithAlignment
to get the precise alignment information.
Differential Revision: https://reviews.llvm.org/D37310
llvm-svn: 312830
This is to fix PR34347. EmitAtomicExpr now only uses alignment information from
Type, instead of Decl, so when the declaration of an atomic variable is marked
to have the alignment equal as its size, EmitAtomicExpr doesn't know about it and
will generate libcall instead of atomic op. The patch uses EmitPointerWithAlignment
to get the precise alignment information.
Differential Revision: https://reviews.llvm.org/D37310
llvm-svn: 312801
This is a recommit of r312781; in some build configurations
variable names are omitted, so changed the new regression
test accordingly.
llvm-svn: 312794
This adds _Float16 as a source language type, which is a 16-bit floating point
type defined in C11 extension ISO/IEC TS 18661-3.
In follow up patches documentation and more tests will be added.
Differential Revision: https://reviews.llvm.org/D33719
llvm-svn: 312781
By exposing the constant initializer, the optimizer can fold many
of these constructs.
This is a recommit of r311857 that was reverted in r311898 because
an assert was hit when building Chromium.
We have to take into account that the GlobalVariable may be first
created with a different type than the initializer. This can
happen for example when the variable is a struct with tail padding
while the initializer does not have padding. In such case, the
variable needs to be destroyed an replaced with a new one with the
type of the initializer.
Differential Revision: https://reviews.llvm.org/D34992
llvm-svn: 312512
This fixes cases where dynamic classes produced RTTI data with
external linkage, producing linker errors about duplicate symbols.
This touches code close to what was changed in SVN r244266, but
this change doesn't break the tests added in that revision.
The previous version had missed to update CodeGenCXX/virt-dtor-key.cpp,
which had a behaviour change only when running the testsuite on windows.
Differential revision: https://reviews.llvm.org/D37327
llvm-svn: 312306
This fixes cases where dynamic classes produced RTTI data with
external linkage, producing linker errors about duplicate symbols.
This touches code close to what was changed in SVN r244266, but
this change doesn't break the tests added in that revision.
Differential revision: https://reviews.llvm.org/D37206
llvm-svn: 312224
Overriding a method from a virtual base with a covariant return type
consumes a slot from the vftable in the virtual base. This can make it
impossible to implement certain diamond inheritance hierarchies, but we
have to follow along for compatibility in the simple cases.
This patch only affects our vtable dumper and member pointer function
mangling, since all other callers of getMethodVFTableLocation seem to
recompute VBTableIndex instead of using the one in the method location.
Patch by David Majnemer
llvm-svn: 312017
It caused PR759744.
> Emit static constexpr member as available_externally definition
>
> By exposing the constant initializer, the optimizer can fold many
> of these constructs.
>
> Differential Revision: https://reviews.llvm.org/D34992
llvm-svn: 311898
By exposing the constant initializer, the optimizer can fold many
of these constructs.
Differential Revision: https://reviews.llvm.org/D34992
llvm-svn: 311857
This patch adds a flag -fclang-abi-compat that can be used to request that
Clang attempts to be ABI-compatible with some older version of itself.
This is provided on a best-effort basis; right now, this can be used to undo
the ABI change in r310401, reverting Clang to its prior C++ ABI for pass/return
by value of class types affected by that change, and to undo the ABI change in
r262688, reverting Clang to using integer registers rather than SSE registers
for passing <1 x long long> vectors. The intent is that we will maintain this
backwards compatibility path as we make ABI-breaking fixes in future.
The reversion to the old behavior for r310401 is also applied to the PS4 target
since that change is not part of its platform ABI (which is essentially to do
whatever Clang 3.2 did).
llvm-svn: 311823
expressions
C++ allows us to reference static variables through member expressions. Prior to
this commit, non-integer static variables that were referenced using a member
expression were always emitted using lvalue loads. The old behaviour introduced
an inconsistency between regular uses of static variables and member expressions
uses. For example, the following program compiled and linked successfully:
struct Foo {
constexpr static const char *name = "foo";
};
int main() {
return Foo::name[0] == 'f';
}
but this program failed to link because "Foo::name" wasn't found:
struct Foo {
constexpr static const char *name = "foo";
};
int main() {
Foo f;
return f.name[0] == 'f';
}
This commit ensures that constant static variables referenced through member
expressions are emitted in the same way as ordinary static variable references.
rdar://33942261
Differential Revision: https://reviews.llvm.org/D36876
llvm-svn: 311772
Do not sanitize the 'this' pointer of a member call operator for a lambda with
no capture-default, since that call operator can legitimately be called with a
null this pointer from the static invoker function. Any actual call with a null
this pointer should still be caught in the caller (if it is being sanitized).
This reinstates r311589 (reverted in r311680) with the above fix.
llvm-svn: 311695
Summary:
Most DIExpressions are empty or very simple. When they are complex, they
tend to be unique, so checking them inline is reasonable.
This also avoids the need for CodeGen passes to append to the
llvm.dbg.mir named md node.
See also PR22780, for making DIExpression not be an MDNode.
Reviewers: aprantl, dexonsmith, dblaikie
Subscribers: qcolombet, javed.absar, eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37075
llvm-svn: 311594
constructors when deciding whether classes should be passed indirectly.
This fixes ABI differences between Clang and GCC:
* Previously, Clang ignored the move constructor when making this
determination. It now takes the move constructor into account, per
https://github.com/itanium-cxx-abi/cxx-abi/pull/17 (this change may
seem recent, but the ABI change was agreed on the Itanium C++ ABI
list a long time ago).
* Previously, Clang's behavior when the copy constructor was deleted
was unstable -- depending on whether the lazy declaration of the
copy constructor had been triggered, you might get different behavior.
We now eagerly declare the copy constructor whenever its deletedness
is unclear, and ignore deleted copy/move constructors when looking for
a trivial such constructor.
This also fixes an ABI difference between Clang and MSVC:
* If the copy constructor would be implicitly deleted (but has not been
lazily declared yet), for instance because the class has an rvalue
reference member, we would pass it directly. We now pass such a class
indirectly, matching MSVC.
Based on a patch by Vassil Vassilev, which was based on a patch by Bernd
Schmidt, which was based on a patch by Reid Kleckner!
This is a re-commit of r310401, which was reverted in r310464 due to ARM
failures (which should now be fixed).
llvm-svn: 310983
the class becoming complete and its inline methods being parsed.
This replaces the hack of using the "late parsed template" flag to track member
functions with bodies we've not parsed yet; instead we now use the "will have
body" flag, which carries the desired implication that the function declaration
*is* a definition, and that we've just not parsed its body yet.
llvm-svn: 310776
It was timing out on this test, but for reasons unrelated to the
specific bug it was testing for. Randomly breaking in gdb with `clang
-target i686-windows -fmsc-version=1700` reveals *many* frames from
MicrosoftCXXNameMangler. So, it would seem that some caching is needed
there, as well...
Fingers crossed that specifying a triple is sufficient to work around
this.
llvm-svn: 310444
This is a follow-up to r310436 with actual functional changes. Please
see that commit message for a description of why a cache is appearing
here.
Suggestions for less-bad ways of testing this are appreciated. :)
This fixes PR29160.
llvm-svn: 310437
Converting a _Complex type to a real one simply discards the imaginary part.
This can easily lead to loss of information so for safety (and GCC
compatibility) this patch disallows that when the conversion would be implicit.
The one exception is bool, which actually compares both real and imaginary
parts and so is safe.
llvm-svn: 310427
Previously we limited ourselves to only emitting nested classes, but we
need other kinds of types as well.
This fixes the Visual Studio STL visualizers, so that users can
visualize std::string and other objects.
llvm-svn: 310410
constructors when deciding whether classes should be passed indirectly.
This fixes ABI differences between Clang and GCC:
* Previously, Clang ignored the move constructor when making this
determination. It now takes the move constructor into account, per
https://github.com/itanium-cxx-abi/cxx-abi/pull/17 (this change may
seem recent, but the ABI change was agreed on the Itanium C++ ABI
list a long time ago).
* Previously, Clang's behavior when the copy constructor was deleted
was unstable -- depending on whether the lazy declaration of the
copy constructor had been triggered, you might get different behavior.
We now eagerly declare the copy constructor whenever its deletedness
is unclear, and ignore deleted copy/move constructors when looking for
a trivial such constructor.
This also fixes an ABI difference between Clang and MSVC:
* If the copy constructor would be implicitly deleted (but has not been
lazily declared yet), for instance because the class has an rvalue
reference member, we would pass it directly. We now pass such a class
indirectly, matching MSVC.
llvm-svn: 310401
In r309007, I made -fsanitize=null a hard prerequisite for -fsanitize=vptr. I
did not see the need for the two checks to have separate null checking logic
for the same pointer. I expected the two checks to either always be enabled
together, or to be mutually compatible.
In the mailing list discussion re: r309007 it became clear that that isn't the
case. If a codebase is -fsanitize=vptr clean but not -fsanitize=null clean,
it's useful to have -fsanitize=vptr emit its own null check. That's what this
patch does: with it, -fsanitize=vptr can be used without -fsanitize=null.
Differential Revision: https://reviews.llvm.org/D36112
llvm-svn: 309846
Summary:
Change the condition of this unnecessary packed warning. The packed is unnecessary when
1. the alignment of the struct/class won't alter.
2. the size is unchanged.
3. the offset of each field is the same.
Remove all field-level warning.
Reviewers: chh, akyrtzi, rtrieu
Reviewed By: chh
Subscribers: rsmith, srhines, cfe-commits, xazax.hun
Differential Revision: https://reviews.llvm.org/D34114
llvm-svn: 309750
CodeGenFunction::EmitTypeMetadataCodeForVCall() could output an
llvm.assume(llvm.type.test())when CFI was enabled, optimizing out the
vcall check. This case was only reached when: 1) CFI-vcall was enabled,
2) -fwhole-program-tables was specified, and 3)
-fno-sanitize-trap=cfi-vcall was specified.
Patch by Vlad Tsyrklevich!
Differential Revision: https://reviews.llvm.org/D36013
llvm-svn: 309622
r303175 made changes to have __cxa_allocate_exception return a 16-byte
aligned pointer, so it's no longer necessary to specify a lower
alignment (8-bytes) for exception objects on Darwin.
rdar://problem/32363695
llvm-svn: 309308
The initializer for a static local variable cannot be hot, because it runs at
most once per program. That's not quite the same thing as having a low branch
probability, but under the assumption that the function is invoked many times,
modeling this as a branch probability seems reasonable.
For TLS variables, the situation is less clear, since the initialization side
of the branch can run multiple times in a program execution, but we still
expect initialization to be rare relative to non-initialization uses. It would
seem worthwhile to add a PGO counter along this path to make this estimation
more accurate in future.
For globals with guarded initialization, we don't yet apply any branch weights.
Due to our use of COMDATs, the guard will be reached exactly once per DSO, but
we have no idea how many DSOs will define the variable.
llvm-svn: 309195
std::byte, when defined as an enum, needs to be given special treatment
with regards to its aliasing properties. An array of std::byte is
allowed to be used as storage for other types.
This fixes PR33916.
Differential Revision: https://reviews.llvm.org/D35824
llvm-svn: 309058
The instrumentation generated by -fsanitize=vptr does not null check a
user pointer before loading from it. This causes crashes in the face of
UB member calls (this=nullptr), i.e it's causing user programs to crash
only after UBSan is turned on.
The fix is to make run-time null checking a prerequisite for enabling
-fsanitize=vptr, and to then teach UBSan to reuse these run-time null
checks to make -fsanitize=vptr safe.
Testing: check-clang, check-ubsan, a stage2 ubsan-enabled build
Differential Revision: https://reviews.llvm.org/D35735https://bugs.llvm.org/show_bug.cgi?id=33881
llvm-svn: 309007
Under Windows Itanium, we need to export virtual and non-virtual thunks
if the functions being thunked are exported. These thunks would
previously inherit their dllexport attribute from the declaration, but
r298330 changed declarations to not have dllexport attributes. We
therefore need to add the dllexport attribute to the definition
ourselves now. This is consistent with MinGW GCC's behavior.
This redoes r306770 but limits the logic to Itanium. MicrosoftCXXABI's
setThunkLinkage ensures that thunks aren't exported under that ABI, so
I'm handling this in ItaniumCXXABI's setThunkLinkage for symmetry.
We need to export these thunks because they can be referenced outside
the library they're defined in. For example, if a child class without a
key function inherits from a parent class with a key function, the
parent's thunks will only be defined in the library with the key
function, but the construction vtable for the parent in the child might
be emitted outside the library (since the child doesn't have a key
function), and it needs to reference the parent's thunks.
We don't need to mark these thunks as imported since any references to
them will occur in data, so the compiler can't generate the IAT load
sequence anyway. Instead, we rely on the linker generating import thunks
for the thunks.
Differential Revision: https://reviews.llvm.org/D34972
llvm-svn: 308899
This change is part of the RegCall calling convention support for LLVM.
Existing RegCall implementation was extended to include correct handling of
Complex Long Double type. Complex long double types should be returned/passed
in memory and not register stack. This patch implements this behavior.
Patch by: eandrews
Differential Revision: https://reviews.llvm.org/D35259
llvm-svn: 308769
The uses of alloca may be in different blocks other than the block containing the alloca.
Therefore if the alloca addr space is non-zero and it needs to be casted to default
address space, the cast needs to be inserted in the same BB as the alloca insted of
the current builder insert point since the current insert point may be in a different BB.
Differential Revision: https://reviews.llvm.org/D35438
llvm-svn: 308313
devirtualized.
The code to detect devirtualized calls is already in IRGen, so move the
code to lib/AST and make it a shared utility between Sema and IRGen.
This commit fixes a linkage error I was seeing when compiling the
following code:
$ cat test1.cpp
struct Base {
virtual void operator()() {}
};
template<class T>
struct Derived final : Base {
void operator()() override {}
};
Derived<int> *d;
int main() {
if (d)
(*d)();
return 0;
}
rdar://problem/33195657
Differential Revision: https://reviews.llvm.org/D34301
llvm-svn: 307883
Certain targets (e.g. amdgcn) require global variable to stay in global or constant address
space. In C or C++ global variables are emitted in the default (generic) address space.
This patch introduces virtual functions TargetCodeGenInfo::getGlobalVarAddressSpace
and TargetInfo::getConstantAddressSpace to handle this in a general approach.
It only affects IR generated for amdgcn target.
Differential Revision: https://reviews.llvm.org/D33842
llvm-svn: 307470
Under Windows Itanium, we need to export virtual and non-virtual thunks
if the functions being thunked are exported. These thunks would
previously inherit their dllexport attribute from the declaration, but
r298330 changed declarations to not have dllexport attributes. We
therefore need to add the dllexport attribute to the definition
ourselves now.
Differential Revision: https://reviews.llvm.org/D34850
llvm-svn: 306770
This patch extends the `overloadable` attribute to allow for one
function with a given name to not be marked with the `overloadable`
attribute. The overload without the `overloadable` attribute will not
have its name mangled.
So, the following code is now legal:
void foo(void) __attribute__((overloadable));
void foo(int);
void foo(float) __attribute__((overloadable));
In addition, this patch fixes a bug where we'd accept code with
`__attribute__((overloadable))` inconsistently applied. In other words,
we used to accept:
void foo(void);
void foo(void) __attribute__((overloadable));
But we will do this no longer, since it defeats the original purpose of
requiring `__attribute__((overloadable))` on all redeclarations of a
function.
This breakage seems to not be an issue in practice, since the only code
I could find that had this pattern often looked like:
void foo(void);
void foo(void) __attribute__((overloadable)) __asm__("foo");
void foo(int) __attribute__((overloadable));
...Which can now be simplified by simply removing the asm label and
overloadable attribute from the redeclaration of `void foo(void);`
Differential Revision: https://reviews.llvm.org/D32332
llvm-svn: 306467
When generating the decorated name for a static variable inside a
BlockDecl, construct a scope for the block invocation function that
homes the parameter. This allows for arbitrary nesting of the blocks
even if the variables are shadowed. Furthermore, using this for the name
allows for undname to properly undecorated the name for us. It shows up
as the synthetic __block_invocation function that the compiler emitted
in the local scope.
llvm-svn: 306347
This reverts commit r306137. It has problems on code like this:
struct __declspec(dllimport) Foo {
int a;
int get_a() { return a; }
};
template <int (Foo::*Getter)()> struct HasValue {
int operator()(Foo *p) { return (p->*Getter)(); }
};
int main() {
Foo f;
f.a = 3;
int x = HasValue<&Foo::get_a>()(&f);
}
llvm-svn: 306175
We were already applying the same rules to dllimport function pointers.
David Majnemer added that logic back in r211677 to fix PR20130. We
failed to extend that logic to non-virtual member function pointers,
which are basically function pointers in a struct with some extra
offsets.
Fixes PR33570.
llvm-svn: 306137
In C++ all variables are in default address space. Previously change has been
made to cast automatic variables to default address space. However that is
not sufficient since all temporary variables need to be casted to default
address space.
This patch casts all temporary variables to default address space except those
for passing indirect arguments since they are only used for load/store.
This patch only affects target having non-zero alloca address space.
Differential Revision: https://reviews.llvm.org/D33706
llvm-svn: 305711
Summary:
If the first parameter of the function is the ImplicitParamDecl, codegen
automatically marks it as an implicit argument with `this` or `self`
pointer. Added internal kind of the ImplicitParamDecl to separate
'this', 'self', 'vtt' and other implicit parameters from other kind of
parameters.
Reviewers: rjmccall, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33735
llvm-svn: 305075
This patch provides a means to specify section-names for global variables,
functions and static variables, using #pragma directives.
This feature is only defined to work sensibly for ELF targets.
One can specify section names as:
#pragma clang section bss="myBSS" data="myData" rodata="myRodata" text="myText"
One can "unspecify" a section name with empty string e.g.
#pragma clang section bss="" data="" text="" rodata=""
Reviewers: Roger Ferrer, Jonathan Roelofs, Reid Kleckner
Differential Revision: https://reviews.llvm.org/D33412
llvm-svn: 304705
__unaligned is not currently mangled in any way in the Itanium ABI. This causes
failures when using -fms-extensions and C++ in targets using Itanium ABI.
As suggested by @rsmith the simplest thing to do here is actually mangle the
qualifier as a vendor extension.
This patch also removes the change done in D31976 and updates its test to the
new reality.
This fixes
https://bugs.llvm.org/show_bug.cgi?id=33080https://bugs.llvm.org/show_bug.cgi?id=33178
Differential Revision: https://reviews.llvm.org/D33398
llvm-svn: 304523
Summary:
We need to emit barrier if the union field
is CXXRecordDecl because it might have vptrs. The testcode
was wrongly devirtualized. It also proves that having different
groups for different dynamic types is not sufficient.
Reviewers: rjmccall, rsmith, mehdi_amini
Subscribers: amharc, cfe-commits
Differential Revision: https://reviews.llvm.org/D31830
llvm-svn: 304448
Summary:
We can emit vtable definition having inline function
if they are all emitted.
Reviewers: rjmccall, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33437
llvm-svn: 304394
Credit goes to Gor Nishanov for putting together the fix in
https://reviews.llvm.org/D33733!
This patch is essentially me patching it locally and writing some test
cases to convince myself that it was necessary for GNU statement
expressions with branches as well as coroutines. I'll ask Gor to land
his patch with just the coroutines test.
During LValue expression evaluation, references can be bound to
anything, really: call results, aggregate temporaries, local variables,
global variables, or indirect arguments. We really only want to spill
instructions that were emitted as part of expression evaluation, and
static allocas are not that.
llvm-svn: 304335
Amongst other, this will help LTO to correctly handle/honor files
compiled with O0, helping debugging failures.
It also seems in line with how we handle other options, like how
-fnoinline adds the appropriate attribute as well.
Differential Revision: https://reviews.llvm.org/D28404
llvm-svn: 304127
Re-commit r303463 now that LLVM is fixed and adjust some lit tests.
llvm::TargetLibraryInfo needs to know the size of wchar_t to work on
functions like `wcslen`. This patch changes clang to always emit the
wchar_size module flag (it would only do so for ARM previously).
This also adds an `assert()` to ensure the LLVM defaults based on the
target triple are in sync with clang.
Differential Revision: https://reviews.llvm.org/D32982
llvm-svn: 303478
Alloca always returns a pointer in alloca address space, which may
be different from the type defined by the language. For example,
in C++ the auto variables are in the default address space. Therefore
cast alloca to the expected address space when necessary.
Differential Revision: https://reviews.llvm.org/D32248
llvm-svn: 303370
This fixes a regression introduced in r302915.
Using the lexical decl context is not necessary here for what r302915
wast trying to achieve. Not canonicalizing the NamespaceDecl in
getOrCreateNamespace is suficient.
rdar://problem/29339538
llvm-svn: 303222
https://bugs.llvm.org/show_bug.cgi?id=32933
Turns out clang wasn't really handling vla's (*) in C++11's for-range entirely correctly.
For e.g. This would lead to generation of buggy IR:
void foo(int b) {
int vla[b];
b = -1; // This store would affect the '__end = vla + b'
for (int &c : vla)
c = 0;
}
Additionally, code-gen would get confused when VLA's were reference-captured by lambdas, and then used in a for-range, which would result in an attempt to generate IR for '__end = vla + b' within the lambda's body - without any capture of 'b' - hence the assertion.
This patch modifies clang, so that for VLA's it translates the end pointer approximately into:
__end = __begin + sizeof(vla)/sizeof(vla->getElementType())
As opposed to the __end = __begin + b;
I considered passing a magic value into codegen - or having codegen special case the '__end' variable when it referred to a variably-modified type, but I decided against that approach, because it smelled like I would be increasing a complicated form of coupling, that I think would be even harder to maintain than the above approach (which can easily be optimized (-O1) to refer to the run-time bound that was calculated upon array's creation or copied into the lambda's closure object).
(*) why oh why gcc would you enable this by default?! ;)
llvm-svn: 303026
It's failing due to Hexagon calling convention lowering being broken (empty
structs are not passed even if they have nontrivial destructors / copy ctors).
llvm-svn: 302825
in list-initialization, run cleanups for the default argument after each
iteration of the initialization loop.
We previously only ran the destructor for any temporary once, at the end of the
complete loop, rather than once per iteration!
Re-commit of r302750, reverted in r302776.
llvm-svn: 302817
Revert "clang/test/CodeGenCXX/array-default-argument.cpp: Satisfy targets that have x86_thiscallcc."
This reverts commit r302750 and its fixup r302757 because the test is
still breaking on some of the ARM bots.
array-default-argument.cpp:20:12: error: expected string not found in input
// CHECK: {{call|invoke}}[[THISCALL:( x86_thiscallcc)?]] void @_ZN1AC1Ev([[TEMPORARY:.*]])
^
<stdin>:18:1: note: scanning from here
arrayctor.loop: ; preds = %arrayctor.loop, %entry
^
<stdin>:28:2: note: possible intended match here
call void @_Z1fv()
^
--
llvm-svn: 302776
in list-initialization, run cleanups for the default argument after each
iteration of the initialization loop.
We previously only ran the destructor for any temporary once, at the end of the
complete loop, rather than once per iteration!
llvm-svn: 302750
This avoids problems on code like this:
char buf[16];
__asm {
movups xmm0, [buf]
mov [buf], eax
}
The frontend size in this case (1) is wrong, and the register makes the
instruction matching unambiguous. There are also enough bytes available
that we shouldn't complain to the user that they are potentially using
an incorrectly sized instruction to access the variable.
Supersedes D32636 and D26586 and fixes PR28266
llvm-svn: 302179
Fix the nullability-assign check so that it can handle assignments into
C++ structs. Previously, such assignments were not instrumented.
Testing: check-clang, check-ubsan, enabling the existing test in ObjC++
mode, and building some Apple frameworks with -fsanitize=nullability.
llvm-svn: 301482
It's possible to determine the alignment of an alloca at compile-time.
Use this information to skip emitting some runtime alignment checks.
Testing: check-clang, check-ubsan.
This significantly reduces the amount of alignment checks we emit when
compiling X86ISelLowering.cpp. Here are the numbers from patched/unpatched
clangs based on r301361.
------------------------------------------
| Setup | # of alignment checks |
------------------------------------------
| unpatched, -O0 | 47195 |
| patched, -O0 | 30876 | (-34.6%)
------------------------------------------
llvm-svn: 301377
This switches from the prototype syntax in P0273R0 ('module' and 'module
implementation') to the consensus syntax 'export module' and 'module'.
In passing, drop the "module declaration must be first" enforcement, since EWG
seems to have changed its mind on that.
llvm-svn: 301056
Windows Itanium aims to use MSVC export and import semantics. Inner
class members shouldn't be exported on a dllexport explicit
instantiation definition of the outer class, and they shouldn't be
imported on a dllimport explicit instantiation declaration of the outer
class (instead a local copy should be emitted). We were doing the first
but not the second, and this mismatch can lead to link errors. Fix the
behavior and add tests for both.
Differential Revision: https://reviews.llvm.org/D32213
llvm-svn: 300804
Under -fms-extensions __unaligned is a type-qualifier that can be applied to a
non-static member function declaration.
This causes an assertion when mangling the name under Itanium, where that
qualifier is not mangled.
This patch justs makes the minimal change to avoid the crash and avoid mangling
__unaligned, as it currently happens with non-member functions.
Differential Revision: https://reviews.llvm.org/D31976
llvm-svn: 300686
LLVM has changed the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
https://bugs.llvm.org/show_bug.cgi?id=32382
rdar://problem/31205000
llvm-svn: 300523
The IR builder can constant-fold null checks if the pointer operand
points to a constant. If the "is-non-null" check is folded away to
"true", don't emit the null check + branch.
Testing: check-clang, check-ubsan.
This slightly reduces the amount of null checks we emit when compiling
X86ISelLowering.cpp. Here are the numbers from patched/unpatched clangs
based on r300371.
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 25251 |
| patched, -O0 | 23925 | (-5.3%)
-------------------------------------
llvm-svn: 300509
Pointers to the start of an alloca are non-null, so we don't need to
emit runtime null checks for them.
Testing: check-clang, check-ubsan.
This significantly reduces the amount of null checks we emit when
compiling X86ISelLowering.cpp. Here are the numbers from patched /
unpatched clangs based on r300371.
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 45439 |
| patched, -O0 | 25251 | (-44.4%)
-------------------------------------
llvm-svn: 300508
If a pointer is 1-byte aligned, there's no use in checking its
alignment. Somewhat surprisingly, ubsan can spend a significant amount
of time doing just that!
This loosely depends on D30283.
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
Differential Revision: https://reviews.llvm.org/D30285
llvm-svn: 300371
This patch teaches ubsan to insert an alignment check for the 'this'
pointer at the start of each method/lambda. This allows clang to emit
significantly fewer alignment checks overall, because if 'this' is
aligned, so are its fields.
This is essentially the same thing r295515 does, but for the alignment
check instead of the null check. One difference is that we keep the
alignment checks on member expressions where the base is a DeclRefExpr.
There's an opportunity to diagnose unaligned accesses in this situation
(as pointed out by Eli, see PR32630).
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
Along with the patch from D30285, this roughly halves the amount of
alignment checks we emit when compiling X86FastISel.cpp. Here are the
numbers from patched/unpatched clangs based on r298160.
------------------------------------------
| Setup | # of alignment checks |
------------------------------------------
| unpatched, -O0 | 24326 |
| patched, -O0 | 12717 | (-47.7%)
------------------------------------------
Differential Revision: https://reviews.llvm.org/D30283
llvm-svn: 300370
Setting dllexport on a declaration has no effect, as we do not emit export
directives for declarations.
Part of the fix for PR32334.
Differential Revision: https://reviews.llvm.org/D31162
llvm-svn: 298330
It's possible to load out-of-range values from bitfields backed by a
boolean or an enum. Check for UB loads from bitfields.
This is the motivating example:
struct S {
BOOL b : 1; // Signed ObjC BOOL.
};
S s;
s.b = 1; // This is actually stored as -1.
if (s.b == 1) // Evaluates to false, -1 != 1.
...
Changes since the original commit:
- Single-bit bools are a special case (see CGF::EmitFromMemory), and we
can't avoid dealing with them when loading from a bitfield. Don't try to
insert a check in this case.
Differential Revision: https://reviews.llvm.org/D30423
llvm-svn: 297389