Return early from llvm::isSafeToDestroyConstant() whenever the value
`isa<ConstantData>()`. These constants are shared across the
LLVMContext. We never really want to delete them here, and walking
their use-lists can be very expensive.
(This is motivated by an eventual goal of removing use-lists entirely
from ConstantData.)
llvm-svn: 282320
This is similar to:
https://reviews.llvm.org/rL279958
By not prematurely lowering to loads, we should be able to more easily eliminate
the 'or' with zero instructions seen in copysign-constant-magnitude.ll.
We should also be able to extend this code to handle vectors.
llvm-svn: 282312
The NativeObjectOutput class has a design problem: it mixes up the caching
policy with the interface for output streams, which makes the client-side
code hard to follow and would for example make it harder to replace the
cache implementation in an arbitrary client.
This change separates the two aspects by moving the caching policy
to a separate field in Config, replacing NativeObjectOutput with a
NativeObjectStream class which only deals with streams and does not need to
be overridden by most clients and introducing an AddFile callback for adding
files (e.g. from the cache) to the link.
Differential Revision: https://reviews.llvm.org/D24622
llvm-svn: 282299
As the development of GlobalISel move forward, this statistic should
strictly decrease until it reaches zero. At this point, it would mean
GlobalISel can replace SDISel (at least on the tested inputs :P).
llvm-svn: 282275
Collect statistics about the number of partial mappings dynamically
allocated and accessed. Ultimately, when the whole TableGen
infrastructure is set, those numbers should be zero.
llvm-svn: 282274
Summary: When identifying cold blocks, consider only the edge to the normal destination if the terminator is InvokeInst and let calcInvokeHeuristics() decide edge weights for the InvokeInst.
Reviewers: mcrosier, hfinkel, davidxl
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D24868
llvm-svn: 282262
This patch corresponds to review:
https://reviews.llvm.org/D21135
This patch exploits the following instructions:
mtvsrws
lxvwsx
mtvsrdd
mfvsrld
In order to improve some build_vector and extractelement patterns.
llvm-svn: 282246
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 282241
If inserting more than one constant into a vector:
define <4 x float> @foo(<4 x float> %x) {
%ins1 = insertelement <4 x float> %x, float 1.0, i32 1
%ins2 = insertelement <4 x float> %ins1, float 2.0, i32 2
ret <4 x float> %ins2
}
InstCombine could reduce that to a shufflevector:
define <4 x float> @goo(<4 x float> %x) {
%shuf = shufflevector <4 x float> %x, <4 x float> <float undef, float 1.0, float 2.0, float undef>, <4 x i32><i32 0, i32 5, i32 6, i32 3>
ret <4 x float> %shuf
}
Also, InstCombine tries to convert shuffle instruction to single insertelement, if one of the vectors is a constant vector and only a single element from this constant should be used in shuffle, i.e.
shufflevector <4 x float> %v, <4 x float> <float undef, float 1.0, float
undef, float undef>, <4 x i32> <i32 0, i32 5, i32 undef, i32 undef> ->
insertelement <4 x float> %v, float 1.0, 1
Differential Revision: https://reviews.llvm.org/D24182
llvm-svn: 282237
This revealed that scalar intrinsics could create nodes with a rounding mode of FROUND_CUR_DIRECTION, but the patterns didn't check for it. It just worked because isel doesn't check operand count and we had a pattern without the rounding mode argument at all.
llvm-svn: 282231
Summary:
For AMDGPU, we have been using the operating system component of the triple
for specifying the low-level runtime that is being used. The rationale for
this is that the host operating system (e.g. Linux) is irrelevant for GPU code,
since its execution enviroment will be mostly controled by the low-level runtime
being used to execute the code.
In most cases, higher level languages have their own runtime which is
implemented on top of the low-level runtime. The kernel ABIs of each
language mostly depend on the low-level runtime, but there may be some
slight differences between languages. OpenCL for example, may append
additional arguments to the kernel in order to pass values like global
offsets or buffers for printf. OpenMP, HCC, or other languages may want
to add their own values which differ from OpenCL.
The reason for adding a new opencl environment type is to make it possible for the backend
to distinguish between the ABIs of the higher-level languages and handle them correctly.
It seems cleaner to use the enviroment component for this rather than creating a new
OS type for every combination of low-level runtime / high-level language.
Reviewers: Anastasia, chandlerc
Subscribers: whchung, pekka.jaaskelainen, wdng, yaxunl, llvm-commits
Differential Revision: https://reviews.llvm.org/D24735
llvm-svn: 282218
Statically instanciate the most common PartialMappings. This should
be closer to what the code would look like when TableGen support is
added for GlobalISel. As a side effect, this should improve compile
time.
llvm-svn: 282215
In the verify method of the ValueMapping class we used to check that the
mapping exactly matches the bits of the input value. This is problematic
for statically allocated mappings because we would need a different
mapping for each different size of the value that maps on one
instruction. For instance, with such scheme, we would need a different
mapping for a value of size 1, 5, 23 whereas they all end up on a 32-bit
wide instruction.
Therefore, change the verifier to check that the meaningful bits are
covered by the mapping instead of matching them.
llvm-svn: 282214
This is another step toward TableGen'ed like structures. The BreakDown of
the mapping of the value will be statically computed by TableGen, thus
we only have to point to the right entry in the table instead of
dynamically allocate the mapping for each instruction.
We still support the dynamic allocation through a factory of
PartialMapping to ease the bring-up of the targets while the TableGen
backend is not available.
llvm-svn: 282213
We already have the udiv variant of this transform, so I think this is ok for
InstCombine too even though there is an increase in IR instructions. As the
tests and TODO comments show, the transform can lead to follow-on combines.
This should fix: https://llvm.org/bugs/show_bug.cgi?id=28672
Differential Revision: https://reviews.llvm.org/D24527
llvm-svn: 282209
Currently all nodes get added to the NextSU list when they are released,
so any candidate must be in that list, making the heuristic ineffective.
Remove it for now, we can add it back later in a working fashion if
necessary.
llvm-svn: 282200
and also the dependent r282175 "GVN-hoist: do not dereference null pointers"
It's causing compiler crashes building Harfbuzz (PR30499).
llvm-svn: 282199
USR_OVF is a subregister of USR, which is a member of CtrRegs. Having both
a register and its proper subregister in the same register class has bad
consequences for lane mask calculation: based solely on the lane mask info,
USR_OVF would not appear to be a subregister of USR.
llvm-svn: 282192
According to MSDN (see the PR), functions which don't touch any callee-saved
registers (including %rsp) don't need any unwind info.
This patch makes LLVM not emit unwind info for such functions, to save
binary size.
Differential Revision: https://reviews.llvm.org/D24748
llvm-svn: 282185
Atomic comparison instructions use the sub-word load instruction on
Power8 and up but the value is not sign extended prior to the signed word
compare instruction. This patch adds that sign extension.
llvm-svn: 282182
A recent patch added support for consumeInteger() and made
getAsInteger delegate to this function. A few buildbots are
failing as a result with an assertion failure. On a hunch,
I tested what happens if I call getAsInteger() on an empty
string, and sure enough it crashes the same way that the
buildbots are crashing.
I confirmed that getAsInteger() on an empty string did not
crash before my patch, so I suspect this to be the cause.
I also added a unit test for the empty string.
llvm-svn: 282170
To hoist stores past loads, we used to search for potential
conflicting loads on the hoisting path by following a MemorySSA
def-def link from the store to be hoisted to the previous
defining memory access, and from there we followed the def-use
chains to all the uses that occur on the hoisting path. The
problem is that the def-def link may point to a store that does
not alias with the store to be hoisted, and so the loads that are
walked may not alias with the store to be hoisted, and even as in
the testcase of PR30216, the loads that may alias with the store
to be hoisted are not visited.
The current patch visits all loads on the path from the store to
be hoisted to the hoisting position and uses the alias analysis
to ask whether the store may alias the load. I was not able to
use the MemorySSA functionality to ask for whether load and
store are clobbered: I'm not sure which function to call, so I
used a call to AA->isNoAlias().
Store past store is still working as before using a MemorySSA
query: I added an extra test to pr30216.ll to make sure store
past store does not regress.
Differential Revision: https://reviews.llvm.org/D24517
llvm-svn: 282168
StringRef::getInteger() exists and treats the entire string as
an integer of the specified radix, failing if any invalid characters
are encountered or the number overflows.
Sometimes you might have something like "123456foo" and you want
to get the number 123456 and leave the string "foo" remaining.
This is similar to what would be possible by using the standard
runtime library functions strtoul et al and specifying an end
pointer.
This patch adds consumeInteger(), which does exactly that. It
consumes as much as possible until an invalid character is found,
and modifies the StringRef in place so that upon return only
the portion of the StringRef after the number remains.
Differential Revision: https://reviews.llvm.org/D24778
llvm-svn: 282164
Without this patch, GVN-hoist would think that a branch instruction is a scalar instruction
and would try to value number it. The patch filters out all such kind of irrelevant instructions.
A bit frustrating is that there is no easy way to discard all those very infrequent instructions,
a bit like isa<TerminatorInst> that stands for a large family of instructions. I'm thinking that
checking for those very infrequent other instructions would cost us more in compilation time
than just letting those instructions getting numbered, so I'm still thinking that a simpler check:
if (isa<TerminatorInst>(I))
return false;
is better than listing all the other less frequent instructions.
Differential Revision: https://reviews.llvm.org/D23929
llvm-svn: 282160
The additional fix is:
When adding debug information to a lowered phi node in mem2reg
check that we have a valid insertion point after the phi for adding
the debug information.
This change addresses the issue in pr30468 where a lowered phi was
added before a catchswitch and no debug information should be added
after the phi in this case.
Differential Revision: https://reviews.llvm.org/D24797
llvm-svn: 282155
This patch corresponds to:
https://reviews.llvm.org/D21409
The LXVD2X, LXVW4X, STXVD2X and STXVW4X instructions permute the two doublewords
in the vector register when in little-endian mode. Custom code ensures that the
necessary swaps are inserted for these. This patch simply removes the possibilty
that a load/store node will match one of these instructions in the SDAG as that
would not insert the necessary swaps.
llvm-svn: 282144
This patch corresponds to review:
https://reviews.llvm.org/D19825
The new lxvx/stxvx instructions do not require the swaps to line the elements
up correctly. In order to select them over the lxvd2x/lxvw4x instructions which
require swaps, the patterns for the old instruction have a predicate that
ensures they won't be selected on Power9 and newer CPUs.
llvm-svn: 282143
For MIPS '#' is the start of comment line. Therefore we get assembler errors if # is used in the structure names.
Differential: D24334
Reviewed by: zhaoqin
llvm-svn: 282141
VPTERNLOG is a ternary instruction with an immediate specifying the logical operation to perform. For each bit position in the 3 source vectors the bit from each source is concatenated together and the resulting 3-bit value is used to select a bit in the immediate. This bit value is written to the result vector.
We can commute this by swapping operands and modifying the immediate. To modify the immediate we need to swap two pairs of bits. The pairs correspond to the locations in the immediate where the commuted operands bits have opposite values and the uncommuted operand has the same value. Bits 0 and 7 will never be swapped since the relevant bits from all sources are the same value.
This refactors and reuses parts of the FMA3 commuting code which is also a three operand instruction.
llvm-svn: 282132
This commit is basically the first step toward what will
RegisterBankInfo look when it gets TableGen'ed.
It introduces a XXXGenRegisterBankInfo.def file that is what TableGen
will issue at some point. Moreover, the RegBanks field in
RegisterBankInfo changed to reflect the static (compile time) aspect of
the information.
llvm-svn: 282131
When initializing an instance of OperandsMapper, instead of using
SmallVector::resize followed by std::fill, use the function that
directly does that in SmallVector.
llvm-svn: 282130
load commands. Added a missing check and made the check for more than
one like other other “more than one” checks. And of course added test cases.
llvm-svn: 282104
Currently, we give up on loop interchange if we encounter a flow dependency
anywhere in the loop list. Worse yet, we don't even track output dependencies.
This patch updates the dependency matrix computation to track flow and output
dependencies in the same way we track anti dependencies.
This improves an internal workload by 2.2x.
Note the loop interchange pass is off by default and it can be enabled with
'-mllvm -enable-loopinterchange'
Differential Revision: https://reviews.llvm.org/D24564
llvm-svn: 282101
With the new LTO API in r278338, we stopped emitting the individual
index files and imports files for some modules in the distributed backend
case (thinlto-index-only plugin option).
Specifically, this is when the linker decides not to include a module in the
link, because it was in an archive library and did not have a strong
reference to it. Not creating the expected output files makes the
distributed build system implementation more difficult, in terms of
checking for the expected outputs of the thin link, and scheduling the
backend jobs. To address this, the gold-plugin will write dummy empty
.thinlto.bc and .imports files for modules not included in the link
(which LTO never sees).
Augmented a gold v1.12+ test, since that version of gold has the handling
for notifying on modules not being included in the link.
llvm-svn: 282100
If we identify an instruction as uniform after vectorization, we know that we
should only use the value corresponding to the first vector lane of each unroll
iteration. However, when scalarizing such instructions, we still produce values
for the other vector lanes. This patch prevents us from generating the unused
scalars.
Differential Revision: https://reviews.llvm.org/D24275
llvm-svn: 282087
Summary: Now that we have more precise debug info, we should change back to use maximum to get basic block weight.
Reviewers: dnovillo
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D24788
llvm-svn: 282084
We still don't really have an equivalent of "AssertXExt" in DAG, so we don't
exploit the guarantees on the receiving side yet, but this should produce
conservatively correct code on iOS ABIs.
llvm-svn: 282069
The only implementation that exists immediately looks it up anyway, and the
information is needed to handle various parameter attributes (stored on the
function itself).
llvm-svn: 282068
The postRA scheduler performs alias analysis to determine if stores and loads
can moved past each other. When a function has more arguments than argument
registers for the calling convention used, excess arguments are spilled onto the
stack. LLVM by default assumes that argument slots are immutable, unless the
function contains a tail call. Without the knowledge of that a function contains
a tail call site, stores and loads to fixed stack slots may be re-ordered
causing the out-going arguments to clobber the incoming arguments before the
incoming arguments are supposed to be dead.
Reviewers: vkalintiris
Differential Review: https://reviews.llvm.org/D24077
llvm-svn: 282063
Summary: AArch64 LLVM assembler emits add instruction without shift bit to calculate the higher 12-bit address of TLS variables in local exec model. This generates wrong code sequence to access TLS variables with thread offset larger than 0x1000.
Reviewers: t.p.northover, peter.smith, rovka
Subscribers: salim.nasser, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D24702
llvm-svn: 282057
It turns out isel is really not robust against having different type profiles for the same opcode. It turns out that if you put an illegal rounding mode(i.e. not CUR_DIRECTION or NO_EXC) on a comiss intrinsic we would generate the FSETCC form with the rounding mode added, but then pattern match to an instruction with ROUND_CUR_DIRECTION.
We can probably get away with just one FSETCCM opcode that always contains the rounding mode and explicitly put ROUND_CUR_DIRECTION in the pattern, but I'll leave that for future work.
With this change the clang tests for the comiss intrinsics that used an incorrect rounding mode of 3 properly fail isel instead of silently doing the wrong thing. Those clang tests will be fixed in a follow up commit and I also plan to add rounding mode checking to clang.
llvm-svn: 282055
There was no way to control its value so it was always FROUND_CURRENT making it unnecessary. The true rounding mode is encoded in the immediate operand of the instruction.
This also removes the pattern from the rb form of the instructions since there is no way to specify the FROUND_NO_EXC rounding mode it required.
llvm-svn: 282052
Summary: In getArgumentAlignment check if the ImmutableCallSite pointer CS is non-null before dereferencing. If CS is 0x0 fall back to the ABI type alignment else compute the alignment as before.
Reviewers: eliben, jpienaar
Subscribers: jlebar, vchuravy, cfe-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D9168
llvm-svn: 282045
Summary:
Emit an empty summary section, instead of no summary section, when
there are no global variables in the index. This ensures that LTO
will treat these files as ThinLTO inputs, instead of as regular
LTO inputs.
In addition to not being what the user likely intended when
compiling with -flto=thin, the current behavior is problematic for
distributed build systems that expect to get ThinLTO index and imports
files back for each input compiled with -flto=thin. Combining into
a single regular LTO module also reduces the backend parallelism.
And in the case where the index was suppressed due to uses in
inline assembly, combining into a single LTO module could provoke
renaming of duplicates that we were trying to prevent by suppressing
the index.
This change required a couple of fixes to handle the empty summary
section.
Reviewers: mehdi_amini
Subscribers: mehdi_amini, llvm-commits, pcc
Differential Revision: https://reviews.llvm.org/D24779
llvm-svn: 282037
TargetMachine::getNameWithPrefix and inline the result into the singular
caller." and "Remove more guts of TargetMachine::getNameWithPrefix and
migrate one check to the TLOF mach-o version." temporarily until I can
get the whole call migrated out of the TargetMachine as we could hit
places where TLOF isn't valid.
This reverts commits r281981 and r281983.
llvm-svn: 282028
Summary:
This is an NFC refactoring change as a precursor to the actual fix for rematerializing in
presence of phi.
https://reviews.llvm.org/D24399
Pasted from review:
findRematerializableChainToBasePointer changed to return the root of the
chain. instead of true or false.
move the PHI matching logic into the caller by inspecting the root return value.
This includes an assertion that the alternate root is in the liveset for the
call.
Tested with current RS4GC tests.
Reviewers: reames, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24780
llvm-svn: 282023
This check caused us to skip adding layout information for calls to
alloca in sspreq/sspstrong mode. We check properly for sspstrong later
on (and add the correct layout info when doing so), so removing this
shouldn't hurt.
No test is included, since testing this using lit seems to require
checking for exact offsets in asm, which is something that the lit tests
for this avoid. If someone cares deeply, I'm happy to write a unittest
or something to cover this, but that feels like overkill.
Patch by Daniel Micay.
Differential Revision: https://reviews.llvm.org/D22714
llvm-svn: 282022
Previously, such section would be marked as SHT_PROGBITS which
makes it impossible to use an initialized C variable declaration
to emit an (allocated) ELF note. The new behavior is also consistent
with ELF assembly parser.
Differential Revision: https://reviews.llvm.org/D24692
llvm-svn: 282010
that use the Mach::dylib_command type for the load commands that are
currently used in the MachOObjectFile constructor.
This contains the missing checks for LC_ID_DYLIB, LC_ID_DYLIB, etc.
load commands and the fields for the Mach::dylib_command type.
Also checks that only an MH_DYLIB or MH_STUB_DYLIB has an
LC_ID_DYLIB load command (and others filetype don’t) and there
is not more than one of these load commands.
llvm-svn: 282008
This reverts part of commit 119e358d9635c8d1f3e7aee67e3ea3b8a62f8db6 by
removing FeatureUseRSqrt et al per request by Eric Christopher
<echristo@gmail.com> (v. http://bit.ly/2cmz6kW).
llvm-svn: 282001
This reverts commit b7d42b0048f65346e9fa37fb65defeea7ce8c337 per request by
Eric Christopher <echristo@gmail.com> (v. http://bit.ly/2cmz6kW).
llvm-svn: 282000
This reverts commit ad8ca1528242e2a4cb363e3779309e70eb7a430e per request by
Eric Christopher <echristo@gmail.com> (v. http://bit.ly/2cmz6kW).
llvm-svn: 281999
This is a follow-up to r281284. Global Variables now can have
!dbg attachements, so ASAN should clone these when generating a
sanitized copy of a global variable.
<rdar://problem/24899262>
llvm-svn: 281994
CodeView has an S_COMPILE3 record to identify the compiler and source language of the compiland. This record comes first in the debug$S section for the compiland. The debuggers rely on this record to know the source language of the code.
There was a little test fallout from introducing a new record into the symbols subsection.
Differential Revision: https://reviews.llvm.org/D24317
llvm-svn: 281990
We would assert that the FP setup CFI used esp/rsp always. This held up in
practice when the code was generated from IR. However, with the integrated
assembler, it is possible to have the input be user specified assembly. In such
a case, we cannot assume that the function implementation has a compact unwind
representation. Loosen the assertion into a check and bail if we cannot
represent the frame pointer in the compact unwinding.
Addresses PR30453!
llvm-svn: 281986
This should match the existing behaviour for passing complicated struct and
array types, in particular HFAs come through like that from Clang.
For C & C++ we still need to somehow support all the weird ABI flags, or at
least those that are present in the IR (signext, byval, ...), and stack-based
parameter passing.
llvm-svn: 281977
The routines llvm::ConvertDebugDeclareToDebugValue() always returned
a true value which was never checked at the call site; change the
function return type to void.
This NFC cleanup was approved in the review https://reviews.llvm.org/D23715
llvm-svn: 281964
SROA doesn't preserve the llvm.mem.parallel_loop_access metadata when it
transforms loads/stores. This patch fixes a couple occurences of this
issue.
(Partially addresses PR28981).
Differential Revision: https://reviews.llvm.org/D23549
llvm-svn: 281960
It is legal to merge instructions with different undef flags; However we
must drop the undef flag from the merged instruction if it isn't present
everywhere.
This fixes http://llvm.org/PR30199
llvm-svn: 281957
When looking at the scribus_1.3 example from https://llvm.org/bugs/show_bug.cgi?id=10584, I noticed that we were spending a large amount of time computing loop exits in LCSSA. This code appears to be written with the assumption that LoopExits are stored in the Loop and thus cheap to query. This is not true, so we should cache the result across the potentially long running loop which tends to visit a small handful of Loops.
On the particular example from 10584, this change drops the time spent in LCSSA computation by about 80%.
Differential Revision: https://reviews.llvm.org/D24509
llvm-svn: 281949
Summary: Callsites in the same basic block should share the same hotness. This patch checks for the hottest callsite in the same basic block, and use the hotness for all callsites in that basic block for early inline decisions. It also fixes the test to add "-S" so theat the "CHECK-NOT" is actually checking the content.
Reviewers: dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24734
llvm-svn: 281927
The OperandsMapper class is used heavy in RegBankSelect and each
instantiation triggered a heap allocation for the array of operands.
Instead, use a SmallVector with a big enough size such that most of the
cases do not have to use dynamically allocated memory.
This improves the compile time of the RegBankSelect pass.
llvm-svn: 281916
Machine programs need a definition of each vreg before reaching a use
(the definition may come from an IMPLICIT_DEF instruction). This class
of errors is not detected by the MachineVerifier because of efficiency
concerns. LiveRangeCalc used to report these problems, make it do that
again (followup to r279625).
Also use report_fatal_error() instead of llvm_unreachable() as the error
reporting is only present in asserts build anyway.
llvm-svn: 281914
Summary: It does not make sense to set equal weights for all unkown branches as we have static branch prediction available.
Reviewers: dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24732
llvm-svn: 281912
Summary: The call target count profile is directly derived from LBR branch->target data. This is more reliable than instruction frequency profiles that could be moved across basic block boundaries. This patches uses call target count profile to annotate call instructions.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24410
llvm-svn: 281911
Summary:
This patch is adding the support for a shadow memory with
dynamically allocated address range.
The compiler-rt needs to export a symbol containing the shadow
memory range.
This is required to support ASAN on windows 64-bits.
Reviewers: kcc, rnk, vitalybuka
Subscribers: kubabrecka, dberris, llvm-commits, chrisha
Differential Revision: https://reviews.llvm.org/D23354
llvm-svn: 281908
Whenever an add/sub immediate needs a fixup, we set that immediate field to zero,
which is correct, but we also set the shift bits to zero, which is not true for
instructions that use lsl #12. This patch makes sure that if lsl #12 was used,
it will appear in the encoding of the instruction.
Differential Revision: https://reviews.llvm.org/D23930
llvm-svn: 281898
Summary:
In case s_branch instruction target is itself backend should emit offset -1 but instead it emit 0.
'''
label:
s_branch label // should emit [0xff,0xff,0x82,0xbf]
'''
Tom, Matt: why are we adjusting fixup values in applyFixup() method instead of processFixup()? processFixup() is calling adjustFixupValue() but does nothing with its result.
Reviewers: vpykhtin, artem.tamazov, tstellarAMD
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl
Differential Revision: https://reviews.llvm.org/D24671
llvm-svn: 281896
When phi nodes are created in the -mem2reg phase, the @llvm.dbg.declare
entries are converted to @llvm.dbg.value entries at the place where the
store instructions existed. However no entry is created to describe
the resulting value of the phi node.
The effect of this is especially noticeable in for loops which have a
constant for the intial value; the loop control variable's location
would be described as the intial constant value in the loop body once
the -mem2reg optimization phase was run.
This change adds the creation of the @llvm.dbg.value entries to describe
variables whose location is the result of a phi node created in -mem2reg.
Also when the phi node is finally lowered to a machine instruction it
is important that the lowered "load" instruction is placed before the
associated DEBUG_VALUE entry describing the value loaded.
Differential Revision: https://reviews.llvm.org/D23715
llvm-svn: 281895
The initial mapping symbol state is set from the triple, but we only checked
for the little-endian thumb triple, so could end up with an ARM mapping symbol
for big-endian thumb.
Differential Revision: https://reviews.llvm.org/D24553
llvm-svn: 281894
ldm and stm instructions always require 4-byte alignment on the pointer, but we
weren't checking this before trying to reduce code-size by replacing a
post-indexed load/store with them. Unfortunately, we were also dropping this
incormation in DAG ISel too, but that's easy enough to fix.
llvm-svn: 281893
We were updating metadata but not IR flags. Because we pick an arbitrary instruction to be the CSE candidate, it comes down to luck (50% or less chance) if this results in broken codegen or not, which is why PR30373 which is actually not the fault of the commit it was bisected down to.
Fixes PR30373.
llvm-svn: 281889
SUBREG_TO_REG is supposed to indicate that the super register has been zeroed, but we can't prove that if we don't know where it came from.
llvm-svn: 281885
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
https://reviews.llvm.org/D23932 (Clang test)
https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 281878
Summary: Previously we reline on inst-combine to remove inlinable invoke instructions. This causes trouble because a few extra optimizations are schedule early that could introduce too much CFG change (e.g. simplifycfg removes too much control flow). This patch handles invoke instruction in-place during sample profile annotation, so that we do not rely on instcombine to remove those invoke instructions.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24409
llvm-svn: 281870
With D24253 we can now use SelectionDAG::SignBitIsZero with vector operations.
This patch uses SelectionDAG::SignBitIsZero to recognise that a zero sign bit means that we can use a sitofp instead of a uitofp (which is not directly support on pre-AVX512 hardware).
While AVX512 does provide support for uitofp, the conversion to sitofp should not cause any regressions.
Differential Revision: https://reviews.llvm.org/D24343
llvm-svn: 281852
Simplified GEP cloning in vectorizeMemoryInstruction().
Added an assertion that checks consecutive GEP, which should have only one loop-variant operand.
Differential Revision: https://reviews.llvm.org/D24557
llvm-svn: 281851
Summary:
This fixes an issue when files are compiled with -flto=thin
at default -O0. We need to rename anonymous globals before attempting
to write the module summary because all values need names for
the summary. This was happening at -O1 and above, but not before
the early exit when constructing the pipeline for -O0.
Also add an internal -prepare-for-thinlto option to enable this
to be tested via opt.
Fixes PR30419.
Reviewers: mehdi_amini
Subscribers: probinson, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D24701
llvm-svn: 281840
We were trying to avoid using a FrameIndex operand in non-pointer
operands in a convoluted way, and would break because of
using TargetFrameIndex. The TargetFrameIndex should only be used
in the case where it makes sense to fold it as part of the addressing
mode, otherwise it requires materialization like a normal constant.
This wasn't working reliably and failed in the added testcase, hitting
the assert when processing the frame index.
The TargetFrameIndex was coming from trying to produce an AssertZext
limiting the maximum stack size. I'm not sure this was correct to begin
with, because it is apparently possible to have a single workitem
dispatch that requires all 4G of private memory.
llvm-svn: 281824
This reduces the number of copies and reg_sequences
when using fp constant vectors. This significantly
reduces the code size in local-stack-alloc-bug.ll
llvm-svn: 281822
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
This is a recommit of r281806 after fixing the accessor to return
a pointer instead of a reference and updating all the call-sites.
llvm-svn: 281813
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
llvm-svn: 281806
Summary: i8, i16, and f16 values are not extended to 32-bit in the HSA kernel ABI.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D24621
llvm-svn: 281789
These clean up some unnecessary or instructions in
cases with complex loops.
In the original testcase I noticed this, the same
or with exec was repeated 5 or 6 times in a row. With
this only one is emitted or sometimes a copy.
llvm-svn: 281786
This is a fix for PR30318.
Clang may generate IR where an alloca is already live when entering a
BB with lifetime.start. In this case, conservatively extend the
alloca lifetime all the way back to the block entry.
llvm-svn: 281784
When trying to recolor a register we may split live-ranges in the
process. When we create new live-ranges we will have to process them,
but when we move a register from Assign to Split, the allocation is not
changed until the whole recoloring session is successful.
Therefore, only push the live-ranges that changed from Assign to
Split when the recoloring is successful.
Same as the previous commit, I was not able to produce a test case that
reproduce the problem with in-tree targets.
Note: The bug has been here since the recoloring scheme has been added
back in r200883 (Feb 2014).
llvm-svn: 281783
When last chance recoloring is used, the list of NewVRegs may not be
empty when calling selectOrSplitImpl. Indeed, another coloring may have
taken place with splitting/spilling in the same recoloring session.
Relax an assertion to take this into account and adapt a condition to
act as if the NewVRegs were local to this selectOrSplitImpl instance.
Unfortunately I am unable to produce a test case for this, I was only
able to reproduce the conditions on an out-of-tree target.
llvm-svn: 281782
Summary:
The main challenge in lowering kernel arguments for AMDGPU is determing the
memory type of the argument. The generic calling convention code assumes
that only legal register types can be stored in memory, but this is not the
case for AMDGPU.
This consolidates all the logic AMDGPU uses for deducing memory types into a single
function. This will make it much easier to support different ABIs in the future.
Reviewers: arsenm
Subscribers: arsenm, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D24614
llvm-svn: 281781
Summary:
mesa3d will use the same kernel calling convention as amdhsa, but it will
handle everything else like the default 'unknown' OS type.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D22783
llvm-svn: 281779
computeKnownBits() already works for integer vectors, so allow vector types when calling that from InstCombine.
I don't think the change to use m_APInt in computeKnownBits is strictly necessary because we do check for
ConstantVector later, but it's more efficient to handle the splat case without needing to loop on vector elements.
This should work with InstSimplify, but doesn't yet, so I made that a FIXME comment on the test for PR24942:
https://llvm.org/bugs/show_bug.cgi?id=24942
Differential Revision: https://reviews.llvm.org/D24677
llvm-svn: 281777
Recommitting after fixing AsmParser initialization and X86 inline asm
error cleanup.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281762
A follow-up patch will rename this pass and the source file accordingly,
but I figured the non-NFC change will be easier to spot in isolation.
Differential Revision: https://reviews.llvm.org/D24641
llvm-svn: 281744
We used to only support instructions with same-type operands.
Instead, use the per-register type information to map each
operand more accurately.
llvm-svn: 281734
Enhance SCEV to compute the trip count for some loops with unknown stride.
Patch by Pankaj Chawla
Differential Revision: https://reviews.llvm.org/D22377
llvm-svn: 281732
When a phi node is finally lowered to a machine instruction it is
important that the lowered "load" instruction is placed before the
associated DEBUG_VALUE entry describing the value loaded.
Renamed the existing SkipPHIsAndLabels to SkipPHIsLabelsAndDebug to
more fully describe that it also skips debug entries. Then used the
"new" function SkipPHIsAndLabels when the debug information should not
be skipped when placing the lowered "load" instructions so that it is
placed before the debug entries.
Differential Revision: https://reviews.llvm.org/D23760
llvm-svn: 281727
Summary:
In runThinLTO we start the task numbering for ThinLTO backend
tasks depending on whether there was also a regular LTO object
(CombinedModule). However, the CombinedModule is moved at
the end of runRegularLTO, so we need to save this information and
pass it into runThinLTO. Otherwise the AddOutput callback to the client
will use the same task number for both the regular LTO object
and the first ThinLTO object, which in gold-plugin caused only
one to be end up in the output filename array and therefore passed
back to gold for the final native link.
Reviewers: pcc, mehdi_amini
Subscribers: mehdi_amini, kromanova
Differential Revision: https://reviews.llvm.org/D24643
llvm-svn: 281725
For compatiblity with binutils, define these instructions to take
two registers with a 16bit unsigned immediate. Both of the registers
have to be same for dahi and dati.
Reviewers: vkalintiris, dsanders, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D21473
llvm-svn: 281724
(and the same for SREM)
This was causing buildbot failures earlier (time outs in the LNT suite).
However, we haven't been able to reproduce this and are suspecting this
was caused by another (reverted) patch.
llvm-svn: 281719
Summary:
`TargetLoweringObjectFile` can be re-used and thus `TargetLoweringObjectFile::Initialize()`
can be called multiple times causing `Mang` pointer memory leak.
Reviewers: echristo
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D24659
llvm-svn: 281718
LazyCallGraph to support repeated, stable iterations, even in the face
of graph updates.
This is particularly important to allow the CGSCC pass manager to walk
the RefSCCs (and thus everything else) in a module more than once. Lots
of unittests and other tests were hard or impossible to write because
repeated CGSCC pass managers which didn't invalidate the LazyCallGraph
would conclude the module was empty after the first one. =[ Really,
really bad.
The interesting thing is that in many ways this simplifies the code. We
can now re-use the same code for handling reference edge insertion
updates of the RefSCC graph as we use for handling call edge insertion
updates of the SCC graph. Outside of adapting to the shared logic for
this (which isn't trivial, but is *much* simpler than the DFS it
replaces!), the new code involves putting newly created RefSCCs when
deleting a reference edge into the cached list in the correct way, and
to re-formulate the iterator to be stable and effective even in the face
of these kinds of updates.
I've updated the unittests for the LazyCallGraph to re-iterate the
postorder sequence and verify that this all works. We even check for
using alternating iterators to trigger the lazy formation of RefSCCs
after mutation has occured.
It's worth noting that there are a reasonable number of likely
simplifications we can make past this. It isn't clear that we need to
keep the "LeafRefSCCs" around any more. But I've not removed that mostly
because I want this to be a more isolated change.
Differential Revision: https://reviews.llvm.org/D24219
llvm-svn: 281716
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 281715
Previous we were issuing an error when linking a module containing
the new Objective-C metadata structure for class properties with an
"old" one.
Now instead we downgrade the module flag so that the Objective-C
runtime does not expect the new metadata structure.
This is consistent with what ld64 is doing on binary files.
Differential Revision: https://reviews.llvm.org/D24620
llvm-svn: 281685
For small, discontiguous local variable regions, CodeView can use a
single defrange record with a gap, rather than having two defrange
records. I expect that this optimization will only have a minor impact
on debug info size.
llvm-svn: 281664
These 2 helper functions were already using APInt internally, so just
change the API and caller to allow folds for splats. The scalar
regression tests look quite thorough, so I just added a couple of
tests to prove that vectors are handled too.
These folds should be grouped with the other cmp+shift folds though.
That can be an NFC follow-up.
llvm-svn: 281663
GlobalOpt is already dead-code-eliminating global definitions. With
this change it also takes care of declarations.
Hopefully this should make it now a strict superset of GlobalDCE.
This is important for LTO/ThinLTO as we don't want the linker to see
"undefined reference" when it processes the input files: it could
prevent proper internalization (or even load an extra file from a
static archive, changing the behavior of the program!).
llvm-svn: 281653
Currently, the machine combiner can proceed matching when -ffast-math is on.
It should also match when only -ffp-contract=fast is specified as was the
case before when DAGCombiner was doing the job.
Patch by: Abderrazek Zaafrani <a.zaafrani@samsung.com>.
Differential Revision: https://reviews.llvm.org/D24366
llvm-svn: 281649
The IPI stream is structurally identical to the TPI stream, but it
contains different record types. So we just re-use the TPI writing
code.
llvm-svn: 281638
We were inadvertently adding the size of the hash value stream to
the size of the TPI stream, even though the hash value stream is
an entirely separate stream.
llvm-svn: 281636
This pattern is matched in foldICmpBinOpEqualityWithConstant() and already works
with vectors too. I changed some comments over there to point out the current
location. The tests for this transform are currently in 'sub.ll'.
Note that the remaining folds in this block all require a sub too, so they should
get grouped with the other icmp(sub) patterns.
llvm-svn: 281627
Summary: The return value of `maybeInsertAsanInitAtFunctionEntry` is ignored.
Reviewers: rnk
Subscribers: llvm-commits, chrisha, dberris
Differential Revision: https://reviews.llvm.org/D24568
llvm-svn: 281620
This is a big glob of transforms that probably should work for vectors,
but currently they are disallowed because of ConstantInt guards.
llvm-svn: 281614
Unfortunately we can't enable it for all N64 because it is not yet possible to
distinguish N32 from N64.
N64 has been confirmed to produce identical (within reason) objects to GAS
during stage 2 of compiler recursion on N64-abit Fedora. Unfortunately,
Fedora's triples do not distinguish N32 from N64 so I can't enable it by
default there. I'm currently repeating this testing for Debian mips64el but
it's very unlikely to produce a different result.
Patch by: Daniel Sanders
Reviewers: sdardis
Differential Review: https://reviews.llvm.org/D22678
llvm-svn: 281607
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
llvm-svn: 281604
It was only really there as a sentinel when instructions had to have precisely
one type. Now that registers are typed, each register really has to have a type
that is sized.
llvm-svn: 281599
Otherwise everything that needs to work out what size they are has to keep a
DataLayout handy, which is a bit silly and very annoying.
llvm-svn: 281597
The patch is to partially fix PR10584. Correlated Value Propagation queries LVI
to check non-null for pointer params of each callsite. If we know the def of
param is an alloca instruction, we know it is non-null and can return early from
LVI. Similarly, CVP queries LVI to check whether pointer for each mem access is
constant. If the def of the pointer is an alloca instruction, we know it is not
a constant pointer. These shortcuts can reduce the cost of CVP significantly.
Differential Revision: https://reviews.llvm.org/D18066
llvm-svn: 281586
The `CVType` had two redundant fields which were confusing and
error-prone to fill out. By treating member records as a distinct
type from leaf records, we are able to simplify this quite a bit.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24432
llvm-svn: 281556
This completes being able to write all the interesting
values of a PDB TPI stream.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24370
llvm-svn: 281555
Summary:
This fixes a dumpbin warning on objects produced by the MC assembler
when starting from text. All .debug$S sections are supposed to be marked
IMAGE_SCN_MEM_DISCARDABLE. The main, non-COMDAT .debug$S section had
this set, but any comdat ones were not being marked discardable because
there was no .section flag for it.
This change does two things:
- If the section name starts with .debug, implicitly mark the section as
discardable. This means we do the same thing as gas on .s files with
DWARF from GCC, which is important.
- Adds the 'D' flag to the .section directive on COFF to explicitly say
a section is discardable. We only emit this flag if the section name
does not start with .debug. This allows the user to explicitly tweak
their section flags without worrying about magic section names.
The only thing you can't do in this scheme is to create a
non-discardable section with a name starting with ".debug", but
hopefully users don't need that.
Reviewers: majnemer, rafael
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24582
llvm-svn: 281554
If TBAA is on an intrinsic and it gets upgraded, it'll delete the call
instruction that we collected in a vector. Even if we were to use
WeakVH, it'll drop the TBAA and we'll hit the assert on the upgrade
path.
r263673 gave a shot to make sure the TBAA upgrade happens before
intrinsics upgrade, but failed to account for all cases.
Instead of collecting instructions in a vector, this patch makes it
just upgrade the TBAA on the fly, because metadata are always
already loaded at this point.
Differential Revision: https://reviews.llvm.org/D24533
llvm-svn: 281549
Previously the prevailing information was not honored, and commons
symbols could override a strong definition. This patch fixes it and
propose the following semantic for commons: the client should mark
as prevailing the commons that it expects the LTO implementation to
merge (i.e. take the maximum size and alignment).
It implies that commons are allowed to have multiple prevailing
definitions.
Differential Revision: https://reviews.llvm.org/D24545
llvm-svn: 281538
Summary:
It was previously not possible for tools to use solely the stackmap
information emitted to reconstruct the return addresses of callsites in
the map, which is necessary to use the information to walk a stack. This
patch adds per-function callsite counts when emitting the stackmap
section in order to resolve the problem. Note that this slightly alters
the stackmap format, so external tools parsing these maps will need to
be updated.
**Problem Details:**
Records only store their offset from the beginning of the function they
belong to. While these records and the functions are output in program
order, it is not possible to determine where the end of one function's
records are without the callsite count when processing the records to
compute return addresses.
Patch by Kavon Farvardin!
Reviewers: atrick, ributzka, sanjoy
Subscribers: nemanjai
Differential Revision: https://reviews.llvm.org/D23487
llvm-svn: 281532
Summary:
Function __asan_default_options is called by __asan_init before the
shadow memory got initialized. Instrumenting that function may lead
to flaky execution.
As the __asan_default_options is provided by users, we cannot expect
them to add the appropriate function atttributes to avoid
instrumentation.
Reviewers: kcc, rnk
Subscribers: dberris, chrisha, llvm-commits
Differential Revision: https://reviews.llvm.org/D24566
llvm-svn: 281503
Until AVX512DQ we only support i64/vXi64 sitofp conversion as scalars.
This patch sees if the sign bit extends far enough that we can truncate to a i32 type and then perform sitofp without loss of precision.
Differential Revision: https://reviews.llvm.org/D24345
llvm-svn: 281502
This addresses a TODO to handle operations besides and. This
also starts eliminating no-op operations with a constant that
can emerge later.
llvm-svn: 281488
This patch moves the processing of pointer induction variables in
collectLoopUniforms from the consecutive pointer phase of the analysis to the
phi node phase. Previously, if a pointer induction variable was used by both a
scalarized non-memory instruction as well as a vectorized memory instruction,
we would incorrectly identify the pointer as uniform. Pointer induction
variables should be treated the same as other phi nodes. That is, they are
uniform if all users of the induction variable and induction variable update
are uniform.
Differential Revision: https://reviews.llvm.org/D24511
llvm-svn: 281485
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281484
This patch corresponds to review:
https://reviews.llvm.org/D24021
In the initial implementation of this instruction, I forgot to account for
variable indices. This patch fixes PR30189 and should probably be merged into
3.9.1 (I'll open a bug according to the new instructions).
llvm-svn: 281479
in order to make sure that its TargetMachine constructor is
registered.
This allows us to run the PEI machine pass with MIR input
(see PR30324).
llvm-svn: 281474
There is currently no codegen for Power9 that depends on the directive
so this is NFC for now but will be important in the future. This was
missed in r268950 so I'm adding it now.
llvm-svn: 281473
The '-asan-use-private-alias’ option (disabled by default) option is currently only enabled for Linux and ELF, but it also works on Darwin and Mach-O. This option also fixes a known problem with LTO on Darwin (https://github.com/google/sanitizers/issues/647). This patch enables the support for Darwin (but still keeps it off by default) and adds the LTO test case.
Differential Revision: https://reviews.llvm.org/D24292
llvm-svn: 281470
value is a pointer.
This patch is to fix PR30213. When expanding an expr based on ValueOffsetPair,
if the value is of pointer type, we can only create a getelementptr instead
of sub expr.
Differential Revision: https://reviews.llvm.org/D24088
llvm-svn: 281439
ObjC library call with call return.
ARC contraction tries to replace uses of an argument passed to an
objective-c library call with the call return value. For example, in the
following IR, it replaces uses of argument %9 and uses of the values
discovered traversing the chain upwards (%7 and %8) with the call return
%10, if they are dominated by the call to @objc_autoreleaseReturnValue.
This transformation enables code-gen to tail-call the call to
@objc_autoreleaseReturnValue, which is necessary to enable auto release
return value optimization.
%7 = tail call i8* @objc_loadWeakRetained(i8** %6)
%8 = bitcast i8* %7 to %0*
%9 = bitcast %0* %8 to i8*
%10 = tail call i8* @objc_autoreleaseReturnValue(i8* %9)
ret %0* %8
Since r276727, llvm started removing redundant bitcasts and as a result
started feeding the following IR to ARC contraction:
%7 = tail call i8* @objc_loadWeakRetained(i8** %6)
%8 = bitcast i8* %7 to %0*
%9 = tail call i8* @objc_autoreleaseReturnValue(i8* %7)
ret %0* %8
ARC contraction no longer does the optimization described above since it
only traverses the chain upwards and fails to recognize that the
function return can be replaced by the call return. This commit changes
ARC contraction to traverse the chain downwards too and replace uses of
bitcasts with the call return.
rdar://problem/28011339
Differential Revision: https://reviews.llvm.org/D24523
llvm-svn: 281419
Summary: When expanding mul in type legalization make sure the type for shift amount can actually fit the value. This fixes PR30354 https://llvm.org/bugs/show_bug.cgi?id=30354.
Reviewers: hfinkel, majnemer, RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: https://reviews.llvm.org/D24478
llvm-svn: 281403
This allows us to, in some cases, create a vector_shuffle out of a build_vector, when
the inputs to the build are extract_elements from two different vectors, at least one
of which is wider than the output. (E.g. a <8 x i16> being constructed out of
elements from a <16 x i16> and a <8 x i16>).
Differential Revision: https://reviews.llvm.org/D24491
llvm-svn: 281402
that use the Mach::dyld_info_command type for the load commands that are
currently use in the MachOObjectFile constructor.
This contains the missing checks for LC_DYLD_INFO and
LC_DYLD_INFO_ONLY load commands and the fields for the
Mach::dyld_info_command type.
llvm-svn: 281400
Cleanup/change the code that checks for possible tailcall conventions to
look the same as the one in the X86 target. This makes the distinction
between calling conventions that can guarnatee tailcalls and the ones
that may tailcall more obvious.
- Add Swift to the mayTailCall list
- PreserveMost seemed to be incorrectly part of the guarnteed tail call
list, move it to the mayTailCall list.
llvm-svn: 281376
To avoid assertion, we must ensure that the inner shift constant is within range before calling ConstantSDNode::getZExtValue(). We already know that the outer shift constant is in range.
Followup to D23007
llvm-svn: 281362
The constant folder didn't know how to always fold bitcasts of constant integer
vectors. In particular, it was unable to handle the case where a constant vector
had some undef elements, and the resulting (i.e. bitcasted) vector type had more
elements than the original vector type.
Example:
%cast = bitcast <2 x i64><i64 undef, i64 2> to <4 x i32>
On a little endian target, %cast could have been folded to:
<4 x i32><i32 undef, i32 undef, i32 2, i32 0>
This patch improves the folding logic by teaching how to correctly propagate
undef elements in the folded vector.
Differential Revision: https://reviews.llvm.org/D24301
llvm-svn: 281343
Recommitting after fixing AsmParser Initialization.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281336
Before, only Thumb functions were marked as ".code 16". These
".code x" directives are effective until the next directive of its
kind is encountered. Therefore, in code with interleaved ARM and
Thumb functions, it was possible to declare a function as ARM and
end up with a Thumb function after assembly. A test has been added.
An existing test has also been fixed to take this change into
account.
Reviewers: aschwaighofer, t.p.northover, jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D24337
llvm-svn: 281324
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281323
Teach SimplifyLibcalls that in can treat functions annotated with
apcs, aapcs or aapcs_vfp like normal C functions if they only take
and return integer or pointer values, and the target is not iOS.
Differential Revision: https://reviews.llvm.org/D24453
llvm-svn: 281322
The changes made in r269352, r269353 and r269354 to support the
transformation of the ldr rd,=immediate to mov introduced a regression
from 3.8 (ldr.w rd, =immediate) not supported.
This change puts support back in for ldr.w by means of a t2InstAlias for
the .w form. The .w is ignored in ARM state and propagated to the ldr in
Thumb2.
llvm-svn: 281319
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281314
descriptions now tag add instructions, and the Hexagon backend is using this to
identify loop induction statements.
Patch by Sam Parker and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D23601
llvm-svn: 281304
Optimized (truncate (assertzext x) to i1) and anyext i1 to i8/16/32.
Optimization of this patterns is a one more step towards i1 optimization on AVX-512.
Differential Revision: https://reviews.llvm.org/D24456
llvm-svn: 281302
We currently return 4 for stackmaps and patchpoints, which is very optimistic
and can in rare cases cause the branch relaxation pass to fail to relax certain
branches.
This patch causes getInstSizeInBytes to return a pessimistic estimate of the
size as the number of bytes requested in the stackmap/patchpoint. In the future,
we could provide a more accurate estimate by sharing some of the logic in
AArch64::LowerSTACKMAP/PATCHPOINT.
Fixes part of https://llvm.org/bugs/show_bug.cgi?id=28750
Differential Revision: https://reviews.llvm.org/D24073
llvm-svn: 281301
This should allow users of the library to get a range to iterate through
all the subcommands that are registered to the global parser. This
allows users to define subcommands in libraries that self-register to
have dispatch done at a different stage (like main). It allows for
writing code like the following:
for (auto *S : cl::getRegisteredSubcommands()) {
if (*S) {
// Dispatch on S->getName().
}
}
This change also contains tests that show this usage pattern.
Reviewers: zturner, dblaikie, echristo
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D24489
llvm-svn: 281290
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
This should make it easier to add cases that we currently don't cover,
like supporting more kinds of type mismatches and more than 2 input vectors.
llvm-svn: 281283
That confuses e.g. machine basic block placement, which then doesn't
realize that control can fall through a block that ends with a conditional
tail call. Instead, isBranch=1 should be set.
Also, mark EFLAGS as used by these instructions.
llvm-svn: 281281
Convert the previous introduced is-a relationship between the LVICache and LVIImple clases into a has-a relationship and hide all the implementation details of the cache from the lazy query layer.
The only slightly concerning change here is removing the addition of a queried block into the SeenBlock set in LVIImpl::getBlockValue. As far as I can tell, this was effectively dead code. I think it *used* to be the case that getCachedValueInfo wasn't const and might end up inserting elements in the cache during lookup. That's no longer true and hasn't been for a while. I did fixup the const usage to make that more obvious.
llvm-svn: 281272
Seperate the caching logic from the implementation of the lazy analysis. For the moment, the lazy analysis impl has a is-a relationship with the cache; this will change to a has-a relationship shortly. This was done as two steps merely to keep the changes simple and the diff understandable.
llvm-svn: 281266
Summary: If consecutive select instructions are lowered separately in CGP, it will introduce redundant condition check and branches that cannot be removed by later optimization phases. This patch lowers all consecutive select instructions at the same to to avoid inefficent code as demonstrated in https://llvm.org/bugs/show_bug.cgi?id=29095
Reviewers: davidxl
Subscribers: vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D24147
llvm-svn: 281252
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281249
This patch moves symbol mangling from findSymbol to getSymbolAddress. The
findSymbol, findExistingSymbol and findModuleForSymbol methods now always take
a mangled name, allowing the 'demangle-and-retry' cruft to be removed from
findSymbol. See http://llvm.org/PR28699 for details.
Patch by James Holderness. Thanks very much James!
llvm-svn: 281238
r280832 added 32-bit support for emitting conditional tail-calls, but
dropped imp-used parameter registers. This went unnoticed until
r281113, which added 64-bit support, as this is only exposed with
parameter passing via registers.
Don't drop the imp-used parameters.
llvm-svn: 281223
Trying to infer the 'returned' attribute if an argument is already
'returned' can lead to verification failure: inference might determine
that a different argument is passed through which would result in two
different arguments marked as 'returned'.
This fixes PR30350.
llvm-svn: 281221
Summary: This removes disabled instructions from match tables so we will not match them at all.
Reviewers: tstellarAMD, vpykhtin, artem.tamazov
Subscribers: wdng, nhaehnle, arsenm
Differential Revision: https://reviews.llvm.org/D24452
llvm-svn: 281216
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281215
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281213
Unlike SDag, we use a separate G_GEP instruction (much simplified, only taking
a single byte offset) to preserve the pointer type information through
selection.
llvm-svn: 281205
Some generic instructions have multiple types. While in theory these always be
discovered by inspecting the single definition of each generic vreg, in
practice those definitions won't always be local and traipsing through a big
function to find them will not be fun.
So this changes MIRPrinter to print out the type of uses as well as defs, if
they're known to be different or not known to be the same.
On the parsing side, we're a little more flexible: provided each register is
given a type in at least one place it's mentioned (and all types are
consistent) we accept the MIR. This doesn't introduce ambiguity but makes
writing tests manually a bit less painful.
llvm-svn: 281204
- Add AllocatorList, a non-intrusive list that owns an LLVM-style
allocator and provides a std::list-like interface (trivially built on
top of simple_ilist),
- add a typedef (and unit tests) for BumpPtrList, and
- use BumpPtrList for the list of llvm::yaml::Token (i.e., TokenQueueT).
TokenQueueT has no need for the complexity of an intrusive list. The
only reason to inherit from ilist was to customize the allocator.
TokenQueueT was the only example in-tree of using ilist<> in a truly
non-intrusive way.
Moreover, this removes the final use of the non-intrusive
ilist_traits<>::createNode (after r280573, r281177, and r281181). I
have a WIP patch that removes this customization point (and the API that
relies on it) that I plan to commit soon.
Note: AllocatorList owns the allocator, which limits the viable API
(e.g., splicing must be on the same list). For now I've left out
any problematic API. It wouldn't be hard to split AllocatorList into
two layers: an Impl class that calls DerivedT::getAlloc (via CRTP), and
derived classes that handle Allocator ownership/reference/etc semantics;
and then implement splice with appropriate assertions; but TBH we should
probably just customize the std::list allocators at that point.
llvm-svn: 281182
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
This is a prep commit before fixing MachineBasicBlock::reverse_iterator
invalidation semantics, ala r281167 for ilist::reverse_iterator. This
changes MachineBasicBlock::Instructions to track which node is the
sentinel regardless of LLVM_ENABLE_ABI_BREAKING_CHECKS.
There's almost no functionality change (aside from ABI). However, in
the rare configuration:
#if !defined(NDEBUG) && !defined(LLVM_ENABLE_ABI_BREAKING_CHECKS)
the isKnownSentinel() assertions in ilist_iterator<>::operator* suddenly
have teeth for MachineInstr. If these assertions start firing for your
out-of-tree backend, have a look at the suggestions in the commit
message for r279314, and at some of the commits leading up to it that
avoid dereferencing the end() iterator.
llvm-svn: 281168
This should *actually* fix PR30244. This cranks up the workaround for PR30188 so that we never sink loads or stores of allocas.
The idea is that these should be removed by SROA/Mem2Reg, and any movement of them may well confuse SROA or just cause unwanted code churn. It's not ideal that the midend should be crippled like this, but that unwanted churn can really cause significant regressions in important workloads (tsan).
llvm-svn: 281162
Exposed by PR30244, we will split a block currently if we think we can sink at least one instruction. However this isn't right - the reason we split predecessors is so that we can sink instructions that otherwise couldn't be sunk because it isn't safe to do so - stores, for example.
So, change the heuristic to only split if it thinks it can sink at least one non-speculatable instruction.
Should fix PR30244.
llvm-svn: 281160
Summary:
This will let e.g. the load/store vectorizer propagate this metadata
appropriately.
Reviewers: arsenm
Subscribers: tra, jholewinski, hfinkel, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23479
llvm-svn: 281153
Summary:
With this change (plus some changes to prevent !invariant from being
clobbered within llvm), clang will be able to model the __ldg CUDA
builtin as an invariant load, rather than as a target-specific llvm
intrinsic. This will let the optimizer play with these loads --
specifically, we should be able to vectorize them in the load-store
vectorizer.
Reviewers: tra
Subscribers: jholewinski, hfinkel, llvm-commits, chandlerc
Differential Revision: https://reviews.llvm.org/D23477
llvm-svn: 281152
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
llvm-svn: 281151
Everything under foldICmpInstWithConstant() should now be working for
splat vectors via m_APInt matchers. Ie, I've removed all of the FIXMEs
that I added while cleaning that section up. Note that not all of the
associated FIXMEs in the regression tests are gone though, because some
of the tests require earlier folds that are still scalar-only.
llvm-svn: 281139
Summary:
Could be useful for comparison when we suspect that alloca was skipped
because of this.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24437
llvm-svn: 281126
Summary:
I want to separate out the notions of invariance and dereferenceability
at the MI level, so that they correspond to the equivalent concepts at
the IR level. (Currently an MI load is MI-invariant iff it's
IR-invariant and IR-dereferenceable.)
First step is renaming this function.
Reviewers: chandlerc
Subscribers: MatzeB, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D23370
llvm-svn: 281125
If the literal is being folded into src0, it doesn't matter
if it's an SGPR because it's being replaced with the literal.
Also fixes initially selecting 32-bit versions of some instructions
which also confused commuting.
llvm-svn: 281117
This would create a bitcast use which fails the verifier: swifterror values may
only be used by loads, stores, and as function arguments.
rdar://28233244
llvm-svn: 281114
This extends the optimization in r280832 to also work for 64-bit. The only
quirk is that we can't do this for 64-bit Windows (yet).
Differential Revision: https://reviews.llvm.org/D24423
llvm-svn: 281113
Summary:
Previously these only worked via NVPTX-specific intrinsics.
This change will allow us to convert these target-specific intrinsics
into the general LLVM versions, allowing existing LLVM passes to reason
about their behavior.
It also gets us some minor codegen improvements as-is, from situations
where we canonicalize code into one of these llvm intrinsics.
Reviewers: majnemer
Subscribers: llvm-commits, jholewinski, tra
Differential Revision: https://reviews.llvm.org/D24300
llvm-svn: 281092
Move the target specific setup into the target specific lowering setup. As
pointed out by Anton, the initial change was moving this too high up the stack
resulting in a violation of the layering (the target generic code path setup
target specific bits). Sink this into the ARM specific setup. NFC.
llvm-svn: 281088
SmallVectors are convenient, but they don't cover every use case.
In particular, they are fairly large (3 pointers + one element) and
there is no way to take ownership of the buffer to put it somewhere
else. This patch then adds a lower lever interface that works with
any buffer.
llvm-svn: 281082
We have various command line options that print the type of a
stream, the size of a stream, etc but nowhere that it can all be
viewed together.
Since a previous patch introduced the ability to dump the bytes
of a stream, this seems like a good place to present a full view
of the stream's properties including its size, what kind of data
it represents, and the blocks it occupies. So I added the
ability to print that information to the -stream-data command
line option.
llvm-svn: 281077