The KORTEST was introduced due to a bug where a TEST instruction used a K register.
but, turns out that the opposite case of KORTEST using a GPR is now happening
The change removes the KORTEST flow and adds a COPY instruction from the K reg to a GPR.
Differential Revision: https://reviews.llvm.org/D24953
llvm-svn: 282580
This commit enables more unrolling for SystemZ by implementing the
SystemZTargetTransformInfo::getUnrollingPreferences() method.
It has been found that it is better to only unroll moderately, so the
DefaultUnrollRuntimeCount has been moved into UnrollingPreferences in order
to set this to a lower value for SystemZ (4).
Reviewers: Evgeny Stupachenko, Ulrich Weigand.
https://reviews.llvm.org/D24451
llvm-svn: 282570
This check currently doesn't seem to do anything useful on any in-tree target:
On non-x86, it always evaluates to false, so we never hit the code path that
creates the shuffle with zero.
On x86, it just forwards to isShuffleMaskLegal(), which is a reasonable thing to
query in general, but doesn't make sense if only restricted to zero blends.
Differential Revision: https://reviews.llvm.org/D24625
llvm-svn: 282567
Ever since LAA was split out into an analysis on its own, this function
stopped emitting the report directly. Instead it stores it to be
retrieved by the client which can then emit it as its own report
(e.g. -Rpass-analysis=loop-vectorize).
llvm-svn: 282561
other load commands that use the MachO::dylinker_command type
but not used in llvm libObject code but used in llvm tool code.
This includes LC_ID_DYLINKER, LC_LOAD_DYLINKER
and LC_DYLD_ENVIRONMENT load commands.
llvm-svn: 282553
Another step toward TableGen'ed like structure for the RegisterBankInfo
of AArch64. By doing this, we also save a bit of compile time for the
exact same output.
llvm-svn: 282550
The 'or' case shows up in copysign. The copysign code also had
redundant checking for a scalar zero operand with 'and', so I
removed that.
I'm not sure how to test vector 'and', 'andn', and 'xor' yet,
but it seems better to just include all of the logic ops since
we're fixing 'or' anyway.
llvm-svn: 282546
Summary:
The current implementation of isConstantPhysReg() checks for defs of
physical registers to determine if they are constant. Some
architectures (e.g. AArch64 XZR/WZR) have registers that are constant
and may be used as destinations to indicate the generated value is
discarded, preventing isConstantPhysReg() from returning true. This
change adds a TargetRegisterInfo hook that overrides the no defs check
for cases such as this.
Reviewers: MatzeB, qcolombet, t.p.northover, jmolloy
Subscribers: junbuml, aemerson, mcrosier, rengolin
Differential Revision: https://reviews.llvm.org/D24570
llvm-svn: 282543
There is really no reason for these to be separate.
The vectorizer started this pretty bad tradition that the text of the
missed remarks is pretty meaningless, i.e. vectorization failed. There,
you have to query analysis to get the full picture.
I think we should just explain the reason for missing the optimization
in the missed remark when possible. Analysis remarks should provide
information that the pass gathers regardless whether the optimization is
passing or not.
llvm-svn: 282542
(Re-committed after moving the template specialization under the yaml
namespace. GCC was complaining about this.)
This allows various presentation of this data using an external tool.
This was first recommended here[1].
As an example, consider this module:
1 int foo();
2 int bar();
3
4 int baz() {
5 return foo() + bar();
6 }
The inliner generates these missed-optimization remarks today (the
hotness information is pulled from PGO):
remark: /tmp/s.c:5:10: foo will not be inlined into baz (hotness: 30)
remark: /tmp/s.c:5:18: bar will not be inlined into baz (hotness: 30)
Now with -pass-remarks-output=<yaml-file>, we generate this YAML file:
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 10 }
Function: baz
Hotness: 30
Args:
- Callee: foo
- String: will not be inlined into
- Caller: baz
...
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 18 }
Function: baz
Hotness: 30
Args:
- Callee: bar
- String: will not be inlined into
- Caller: baz
...
This is a summary of the high-level decisions:
* There is a new streaming interface to emit optimization remarks.
E.g. for the inliner remark above:
ORE.emit(DiagnosticInfoOptimizationRemarkMissed(
DEBUG_TYPE, "NotInlined", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CS.getCaller()) << setIsVerbose());
NV stands for named value and allows the YAML client to process a remark
using its name (NotInlined) and the named arguments (Callee and Caller)
without parsing the text of the message.
Subsequent patches will update ORE users to use the new streaming API.
* I am using YAML I/O for writing the YAML file. YAML I/O requires you
to specify reading and writing at once but reading is highly non-trivial
for some of the more complex LLVM types. Since it's not clear that we
(ever) want to use LLVM to parse this YAML file, the code supports and
asserts that we're writing only.
On the other hand, I did experiment that the class hierarchy starting at
DiagnosticInfoOptimizationBase can be mapped back from YAML generated
here (see D24479).
* The YAML stream is stored in the LLVM context.
* In the example, we can probably further specify the IR value used,
i.e. print "Function" rather than "Value".
* As before hotness is computed in the analysis pass instead of
DiganosticInfo. This avoids the layering problem since BFI is in
Analysis while DiagnosticInfo is in IR.
[1] https://reviews.llvm.org/D19678#419445
Differential Revision: https://reviews.llvm.org/D24587
llvm-svn: 282539
Turns out several external projects relied on llvm printing statistics
on exit. Let's go back to this behaviour by default and have an optional
parameter to disable it.
llvm-svn: 282532
LLVM developers might be surprised to learn that there are blocks
without valid insertion points (catchswitch), so it seems worth calling
that out explicitly. Also add a FIXME about what we should really be
doing if we ever need to make optimized Windows EH code debuggable.
While I'm here, make auto usage more consistent with LLVM standards and
avoid an unecessary call to insertBefore.
llvm-svn: 282521
A landing pad can have live-in registers that are defined by the runtime,
not the program (exception pointer register and exception selector
register). Make sure to recognize that case and not link these registers
with any defs in the program.
Each landing pad will have phi nodes added at the beginning to provide
definitions of these registers, but the uses of those phi nodes will not
have any reaching defs.
llvm-svn: 282519
I don't expect `PendingLoopPredicates` to have very many
elements (e.g. when -O3'ing the sqlite3 amalgamation,
`PendingLoopPredicates` has at most 3 elements). So now we use a
`SmallPtrSet` for it instead of the more heavyweight `DenseSet`.
llvm-svn: 282511
Variables are sometimes missing their debug location information in
blocks in which the variables should be available. This would occur
when one or more predecessor blocks had not yet been visited by the
routine which propagated the information from predecessor blocks.
This is addressed by only considering predecessor blocks which have
already been visited.
The solution to this problem was suggested by Daniel Berlin on the
LLVM developer mailing list.
Differential Revision: https://reviews.llvm.org/D24927
llvm-svn: 282506
This allows various presentation of this data using an external tool.
This was first recommended here[1].
As an example, consider this module:
1 int foo();
2 int bar();
3
4 int baz() {
5 return foo() + bar();
6 }
The inliner generates these missed-optimization remarks today (the
hotness information is pulled from PGO):
remark: /tmp/s.c:5:10: foo will not be inlined into baz (hotness: 30)
remark: /tmp/s.c:5:18: bar will not be inlined into baz (hotness: 30)
Now with -pass-remarks-output=<yaml-file>, we generate this YAML file:
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 10 }
Function: baz
Hotness: 30
Args:
- Callee: foo
- String: will not be inlined into
- Caller: baz
...
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 18 }
Function: baz
Hotness: 30
Args:
- Callee: bar
- String: will not be inlined into
- Caller: baz
...
This is a summary of the high-level decisions:
* There is a new streaming interface to emit optimization remarks.
E.g. for the inliner remark above:
ORE.emit(DiagnosticInfoOptimizationRemarkMissed(
DEBUG_TYPE, "NotInlined", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CS.getCaller()) << setIsVerbose());
NV stands for named value and allows the YAML client to process a remark
using its name (NotInlined) and the named arguments (Callee and Caller)
without parsing the text of the message.
Subsequent patches will update ORE users to use the new streaming API.
* I am using YAML I/O for writing the YAML file. YAML I/O requires you
to specify reading and writing at once but reading is highly non-trivial
for some of the more complex LLVM types. Since it's not clear that we
(ever) want to use LLVM to parse this YAML file, the code supports and
asserts that we're writing only.
On the other hand, I did experiment that the class hierarchy starting at
DiagnosticInfoOptimizationBase can be mapped back from YAML generated
here (see D24479).
* The YAML stream is stored in the LLVM context.
* In the example, we can probably further specify the IR value used,
i.e. print "Function" rather than "Value".
* As before hotness is computed in the analysis pass instead of
DiganosticInfo. This avoids the layering problem since BFI is in
Analysis while DiagnosticInfo is in IR.
[1] https://reviews.llvm.org/D19678#419445
Differential Revision: https://reviews.llvm.org/D24587
llvm-svn: 282499
Disable tail calls while the remaining bugs are fixed. Enable only for tests.
Reviewers: vkalintiris
Differential Review: https://reviews.llvm.org/D24912
llvm-svn: 282487
Add rsqrt.[ds], recip.[ds] for MIPS. Correct the microMIPS definitions for
architecture support and register usage.
Reviewers: vkalintiris, zoran.jovanoic
Differential Review: https://reviews.llvm.org/D24499
llvm-svn: 282485
This patch corresponds to review:
https://reviews.llvm.org/D24396
This patch adds support for the "vector count trailing zeroes",
"vector compare not equal" and "vector compare not equal or zero instructions"
as well as "scalar count trailing zeroes" instructions. It also changes the
vector negation to use XXLNOR (when VSX is enabled) so as not to increase
register pressure (previously this was done with a splat immediate of all
ones followed by an XXLXOR). This was done because the altivec.h
builtins (patch to follow) use vector negation and the use of an additional
register for the splat immediate is not optimal.
llvm-svn: 282478
Summary:
We don't currently need this facility for CFI. Disabling individual hot methods proved
to be a better strategy in Chrome.
Also, the design of the feature is suboptimal, as pointed out by Peter Collingbourne.
Reviewers: pcc
Subscribers: kcc
Differential Revision: https://reviews.llvm.org/D24948
llvm-svn: 282461
When we have dynamic allocas we have a frame pointer, and
when we're lowering frame indexes we should make sure we use it.
Patch by Jacob Gravelle
Differential Revision: https://reviews.llvm.org/D24889
llvm-svn: 282442
other load commands that use the Mach::linkedit_data_command type
but not used in llvm libObject code but used in llvm tool code.
This includes LC_FUNCTION_STARTS, LC_SEGMENT_SPLIT_INFO
and LC_DYLIB_CODE_SIGN_DRS load commands.
llvm-svn: 282441
Summary:
This patch improves thinlto importer
by importing 3x larger functions that are called from hot block.
I compared performance with the trunk on spec, and there
were about 2% on povray and 3.33% on milc. These results seems
to be consistant and match the results Teresa got with her simple
heuristic. Some benchmarks got slower but I think they are just
noisy (mcf, xalancbmki, omnetpp)- running the benchmarks again with
more iterations to confirm. Geomean of all benchmarks including the noisy ones
were about +0.02%.
I see much better improvement on google branch with Easwaran patch
for pgo callsite inlining (the inliner actually inline those big functions)
Over all I see +0.5% improvement, and I get +8.65% on povray.
So I guess we will see much bigger change when Easwaran patch will land
(it depends on new pass manager), but it is still worth putting this to trunk
before it.
Implementation details changes:
- Removed CallsiteCount.
- ProfileCount got replaced by Hotness
- hot-import-multiplier is set to 3.0 for now,
didn't have time to tune it up, but I see that we get most of the interesting
functions with 3, so there is no much performance difference with higher, and
binary size doesn't grow as much as with 10.0.
Reviewers: eraman, mehdi_amini, tejohnson
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D24638
llvm-svn: 282437
Previously enabling the statistics with EnableStatistics() would lead to
them getting printed to stderr/-info-output-file on exit. However
frontends may want a way to enable statistics and do the printing on
their own instead of the forced printing on exit.
This changes the code so that only the -stats option enables printing on
exit, EnableStatistics() only enables the tracking but requires invoking
one of the PrintStatistics() variants.
Differential Revision: https://reviews.llvm.org/D24819
llvm-svn: 282425
This patch ensures that we actually scalarize instructions marked scalar after
vectorization. Previously, such instructions may have been vectorized instead.
Differential Revision: https://reviews.llvm.org/D23889
llvm-svn: 282418
Summary:
If coroutine has no suspend points, remove heap allocation and turn a coroutine into a normal function.
Also, if a pattern is detected that coroutine resumes or destroys itself prior to coro.suspend call, turn the suspend point into a simple jump to resume or cleanup label. This pattern occurs when coroutines are used to propagate errors in functions that return expected<T>.
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D24408
llvm-svn: 282414
Don't match the UXTW extended reg forms of ADD/ADDS/SUB/SUBS if the
32-bit to 64-bit zero-extend can be done for free by taking advantage
of the 32-bit defining instruction zeroing the upper 32-bits of the X
register destination. This enables better instruction selection in a
few cases, such as:
sub x0, xzr, x8
instead of:
mov x8, xzr
sub x0, x8, w9, uxtw
madd x0, x1, x1, x8
instead of:
mul x9, x1, x1
add x0, x9, w8, uxtw
cmp x2, x8
instead of:
sub x8, x2, w8, uxtw
cmp x8, #0
add x0, x8, x1, lsl #3
instead of:
lsl x9, x1, #3
add x0, x9, w8, uxtw
Reviewers: t.p.northover, jmolloy
Subscribers: mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D24747
llvm-svn: 282413
Many high-performance processors have a dedicated branch predictor for
indirect branches, commonly used with jump tables. As sophisticated as such
branch predictors are, they tend to have well defined limits beyond which
their effectiveness is hampered or even nullified. One such limit is the
number of possible destinations for a given indirect branches that such
branch predictors can handle.
This patch considers a limit that a target may set to the number of
destination addresses in a jump table.
Patch by: Evandro Menezes <e.menezes@samsung.com>, Aditya Kumar
<aditya.k7@samsung.com>, Sebastian Pop <s.pop@samsung.com>.
Differential revision: https://reviews.llvm.org/D21940
llvm-svn: 282412
The index of the new insertelement instruction was evaluated in the
wrong way, it was considered as the index of the inserted value instead
of index of the position, where the value should be inserted.
llvm-svn: 282401
This patch fixes PR30366.
Function foldUDivShl() worked under the assumption that one of the values
in input to the function was always an instance of llvm::Instruction.
However, function visitUDivOperand() (the only user of foldUDivShl) was
clearly violating that precondition; internally, visitUDivOperand() uses pattern
matches to check the operands of a udiv. Pattern matchers for binary operators
know how to handle both Instruction and ConstantExpr values.
This patch fixes the problem in foldUDivShl(). Now we use pattern matchers
instead of explicit casts to Instruction. The reduced test case from PR30366
has been added to test file InstCombine/udiv-simplify.ll.
Differential Revision: https://reviews.llvm.org/D24565
llvm-svn: 282398
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 282387
Summary:
Replace a LEA instruction of the form 'lea (%esp), %ebx' --> 'mov %esp, %ebx'
MOV is preferable over LEA because usually there are more issue-slots available to execute MOVs than LEAs. Latest processors also support zero-latency MOVs.
Fixes pr29022.
Reviewers: hfinkel, delena, igorb, myatsina, mkuper
Differential Revision: https://reviews.llvm.org/D24705
llvm-svn: 282385
In a previous change I collapsed two different caches into one. When
doing that I noticed that ScalarEvolution's move constructor was not
moving those caches.
To keep the previous change simple, I've moved that bugfix into this
separate change.
llvm-svn: 282376
Both `loopHasNoSideEffects` and `loopHasNoAbnormalExits` involve walking
the loop and maintaining similar sorts of caches. This commit changes
SCEV to compute both the predicates via a single walk, and maintain a
single cache instead of two.
llvm-svn: 282375
This change simplifies a data structure optimization in the
`BackedgeTakenInfo` class for loops with exactly one computable exit.
I've sanity checked that this does not regress compile time performance,
using sqlite3's amalgamated build.
llvm-svn: 282365
Stop looking at users of UndefValue and ConstantPointerNull in the
objective C ARC optimizers. The other users aren't actually
interesting, since they're not pointing at a particular object. I
imagine these calls could be optimized through -instcombine... maybe
they already are?
These early returns will be required at some point in the future, with a
WIP patch that asserts when someone accesses a use-list on ConstantData.
llvm-svn: 282338
There is no benefit in looking through assumptions on UndefValue to
guess known bits. Return early to avoid walking their use-lists, and
assert that all instances of ConstantData are handled here for similar
reasons (UndefValue was the only integer/pointer holdout).
llvm-svn: 282337
Assumptions on UndefValue and ConstantPointerNull aren't relevant to
other users. Ignore them entirely to avoid wasting cycles walking
through their (possibly extremely extensive (cross-module)) use-lists.
It wasn't clear how to add a specific test for this, and it'll be
covered anyway by an eventual patch that asserts when trying to access
the use-list of an instance of ConstantData.
llvm-svn: 282334
Check and return early for ConstantPointerNull and UndefValue
specifically in isKnownNonNullAt, and assert that ConstantData never
make it to isKnownNonNullFromDominatingCondition.
This confirms that isKnownNonNullFromDominatingCondition never walks
through the use-list of an instance of ConstantData. Given that such
use-lists cross module boundaries, it never really made sense to do so,
and was potentially very expensive.
llvm-svn: 282333
This is a step toward statically allocate ValueMapping. Like the
previous few commits, the goal is to move toward a TableGen'ed like
structure with no dynamic allocation at all.
llvm-svn: 282324
Previously we were using the address of the unique instance of a partial
mapping in the related map to access this instance. However, when the
map grows, the whole set of instances may be moved elsewhere and the
previous addresses are not valid anymore.
Instead, keep the address of the unique heap allocated instance of a
partial mapping.
Note: I did not see any actual bugs for that problem as the number of
partial mappings dynamically allocated is small (<= 4).
llvm-svn: 282323
Return early from llvm::isSafeToDestroyConstant() whenever the value
`isa<ConstantData>()`. These constants are shared across the
LLVMContext. We never really want to delete them here, and walking
their use-lists can be very expensive.
(This is motivated by an eventual goal of removing use-lists entirely
from ConstantData.)
llvm-svn: 282320
This is similar to:
https://reviews.llvm.org/rL279958
By not prematurely lowering to loads, we should be able to more easily eliminate
the 'or' with zero instructions seen in copysign-constant-magnitude.ll.
We should also be able to extend this code to handle vectors.
llvm-svn: 282312
The NativeObjectOutput class has a design problem: it mixes up the caching
policy with the interface for output streams, which makes the client-side
code hard to follow and would for example make it harder to replace the
cache implementation in an arbitrary client.
This change separates the two aspects by moving the caching policy
to a separate field in Config, replacing NativeObjectOutput with a
NativeObjectStream class which only deals with streams and does not need to
be overridden by most clients and introducing an AddFile callback for adding
files (e.g. from the cache) to the link.
Differential Revision: https://reviews.llvm.org/D24622
llvm-svn: 282299
As the development of GlobalISel move forward, this statistic should
strictly decrease until it reaches zero. At this point, it would mean
GlobalISel can replace SDISel (at least on the tested inputs :P).
llvm-svn: 282275
Collect statistics about the number of partial mappings dynamically
allocated and accessed. Ultimately, when the whole TableGen
infrastructure is set, those numbers should be zero.
llvm-svn: 282274
Summary: When identifying cold blocks, consider only the edge to the normal destination if the terminator is InvokeInst and let calcInvokeHeuristics() decide edge weights for the InvokeInst.
Reviewers: mcrosier, hfinkel, davidxl
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D24868
llvm-svn: 282262
This patch corresponds to review:
https://reviews.llvm.org/D21135
This patch exploits the following instructions:
mtvsrws
lxvwsx
mtvsrdd
mfvsrld
In order to improve some build_vector and extractelement patterns.
llvm-svn: 282246
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 282241
If inserting more than one constant into a vector:
define <4 x float> @foo(<4 x float> %x) {
%ins1 = insertelement <4 x float> %x, float 1.0, i32 1
%ins2 = insertelement <4 x float> %ins1, float 2.0, i32 2
ret <4 x float> %ins2
}
InstCombine could reduce that to a shufflevector:
define <4 x float> @goo(<4 x float> %x) {
%shuf = shufflevector <4 x float> %x, <4 x float> <float undef, float 1.0, float 2.0, float undef>, <4 x i32><i32 0, i32 5, i32 6, i32 3>
ret <4 x float> %shuf
}
Also, InstCombine tries to convert shuffle instruction to single insertelement, if one of the vectors is a constant vector and only a single element from this constant should be used in shuffle, i.e.
shufflevector <4 x float> %v, <4 x float> <float undef, float 1.0, float
undef, float undef>, <4 x i32> <i32 0, i32 5, i32 undef, i32 undef> ->
insertelement <4 x float> %v, float 1.0, 1
Differential Revision: https://reviews.llvm.org/D24182
llvm-svn: 282237
This revealed that scalar intrinsics could create nodes with a rounding mode of FROUND_CUR_DIRECTION, but the patterns didn't check for it. It just worked because isel doesn't check operand count and we had a pattern without the rounding mode argument at all.
llvm-svn: 282231
Summary:
For AMDGPU, we have been using the operating system component of the triple
for specifying the low-level runtime that is being used. The rationale for
this is that the host operating system (e.g. Linux) is irrelevant for GPU code,
since its execution enviroment will be mostly controled by the low-level runtime
being used to execute the code.
In most cases, higher level languages have their own runtime which is
implemented on top of the low-level runtime. The kernel ABIs of each
language mostly depend on the low-level runtime, but there may be some
slight differences between languages. OpenCL for example, may append
additional arguments to the kernel in order to pass values like global
offsets or buffers for printf. OpenMP, HCC, or other languages may want
to add their own values which differ from OpenCL.
The reason for adding a new opencl environment type is to make it possible for the backend
to distinguish between the ABIs of the higher-level languages and handle them correctly.
It seems cleaner to use the enviroment component for this rather than creating a new
OS type for every combination of low-level runtime / high-level language.
Reviewers: Anastasia, chandlerc
Subscribers: whchung, pekka.jaaskelainen, wdng, yaxunl, llvm-commits
Differential Revision: https://reviews.llvm.org/D24735
llvm-svn: 282218
Statically instanciate the most common PartialMappings. This should
be closer to what the code would look like when TableGen support is
added for GlobalISel. As a side effect, this should improve compile
time.
llvm-svn: 282215
In the verify method of the ValueMapping class we used to check that the
mapping exactly matches the bits of the input value. This is problematic
for statically allocated mappings because we would need a different
mapping for each different size of the value that maps on one
instruction. For instance, with such scheme, we would need a different
mapping for a value of size 1, 5, 23 whereas they all end up on a 32-bit
wide instruction.
Therefore, change the verifier to check that the meaningful bits are
covered by the mapping instead of matching them.
llvm-svn: 282214
This is another step toward TableGen'ed like structures. The BreakDown of
the mapping of the value will be statically computed by TableGen, thus
we only have to point to the right entry in the table instead of
dynamically allocate the mapping for each instruction.
We still support the dynamic allocation through a factory of
PartialMapping to ease the bring-up of the targets while the TableGen
backend is not available.
llvm-svn: 282213
We already have the udiv variant of this transform, so I think this is ok for
InstCombine too even though there is an increase in IR instructions. As the
tests and TODO comments show, the transform can lead to follow-on combines.
This should fix: https://llvm.org/bugs/show_bug.cgi?id=28672
Differential Revision: https://reviews.llvm.org/D24527
llvm-svn: 282209
Currently all nodes get added to the NextSU list when they are released,
so any candidate must be in that list, making the heuristic ineffective.
Remove it for now, we can add it back later in a working fashion if
necessary.
llvm-svn: 282200
and also the dependent r282175 "GVN-hoist: do not dereference null pointers"
It's causing compiler crashes building Harfbuzz (PR30499).
llvm-svn: 282199
USR_OVF is a subregister of USR, which is a member of CtrRegs. Having both
a register and its proper subregister in the same register class has bad
consequences for lane mask calculation: based solely on the lane mask info,
USR_OVF would not appear to be a subregister of USR.
llvm-svn: 282192
According to MSDN (see the PR), functions which don't touch any callee-saved
registers (including %rsp) don't need any unwind info.
This patch makes LLVM not emit unwind info for such functions, to save
binary size.
Differential Revision: https://reviews.llvm.org/D24748
llvm-svn: 282185
Atomic comparison instructions use the sub-word load instruction on
Power8 and up but the value is not sign extended prior to the signed word
compare instruction. This patch adds that sign extension.
llvm-svn: 282182
A recent patch added support for consumeInteger() and made
getAsInteger delegate to this function. A few buildbots are
failing as a result with an assertion failure. On a hunch,
I tested what happens if I call getAsInteger() on an empty
string, and sure enough it crashes the same way that the
buildbots are crashing.
I confirmed that getAsInteger() on an empty string did not
crash before my patch, so I suspect this to be the cause.
I also added a unit test for the empty string.
llvm-svn: 282170
To hoist stores past loads, we used to search for potential
conflicting loads on the hoisting path by following a MemorySSA
def-def link from the store to be hoisted to the previous
defining memory access, and from there we followed the def-use
chains to all the uses that occur on the hoisting path. The
problem is that the def-def link may point to a store that does
not alias with the store to be hoisted, and so the loads that are
walked may not alias with the store to be hoisted, and even as in
the testcase of PR30216, the loads that may alias with the store
to be hoisted are not visited.
The current patch visits all loads on the path from the store to
be hoisted to the hoisting position and uses the alias analysis
to ask whether the store may alias the load. I was not able to
use the MemorySSA functionality to ask for whether load and
store are clobbered: I'm not sure which function to call, so I
used a call to AA->isNoAlias().
Store past store is still working as before using a MemorySSA
query: I added an extra test to pr30216.ll to make sure store
past store does not regress.
Differential Revision: https://reviews.llvm.org/D24517
llvm-svn: 282168
StringRef::getInteger() exists and treats the entire string as
an integer of the specified radix, failing if any invalid characters
are encountered or the number overflows.
Sometimes you might have something like "123456foo" and you want
to get the number 123456 and leave the string "foo" remaining.
This is similar to what would be possible by using the standard
runtime library functions strtoul et al and specifying an end
pointer.
This patch adds consumeInteger(), which does exactly that. It
consumes as much as possible until an invalid character is found,
and modifies the StringRef in place so that upon return only
the portion of the StringRef after the number remains.
Differential Revision: https://reviews.llvm.org/D24778
llvm-svn: 282164
Without this patch, GVN-hoist would think that a branch instruction is a scalar instruction
and would try to value number it. The patch filters out all such kind of irrelevant instructions.
A bit frustrating is that there is no easy way to discard all those very infrequent instructions,
a bit like isa<TerminatorInst> that stands for a large family of instructions. I'm thinking that
checking for those very infrequent other instructions would cost us more in compilation time
than just letting those instructions getting numbered, so I'm still thinking that a simpler check:
if (isa<TerminatorInst>(I))
return false;
is better than listing all the other less frequent instructions.
Differential Revision: https://reviews.llvm.org/D23929
llvm-svn: 282160
The additional fix is:
When adding debug information to a lowered phi node in mem2reg
check that we have a valid insertion point after the phi for adding
the debug information.
This change addresses the issue in pr30468 where a lowered phi was
added before a catchswitch and no debug information should be added
after the phi in this case.
Differential Revision: https://reviews.llvm.org/D24797
llvm-svn: 282155
This patch corresponds to:
https://reviews.llvm.org/D21409
The LXVD2X, LXVW4X, STXVD2X and STXVW4X instructions permute the two doublewords
in the vector register when in little-endian mode. Custom code ensures that the
necessary swaps are inserted for these. This patch simply removes the possibilty
that a load/store node will match one of these instructions in the SDAG as that
would not insert the necessary swaps.
llvm-svn: 282144
This patch corresponds to review:
https://reviews.llvm.org/D19825
The new lxvx/stxvx instructions do not require the swaps to line the elements
up correctly. In order to select them over the lxvd2x/lxvw4x instructions which
require swaps, the patterns for the old instruction have a predicate that
ensures they won't be selected on Power9 and newer CPUs.
llvm-svn: 282143
For MIPS '#' is the start of comment line. Therefore we get assembler errors if # is used in the structure names.
Differential: D24334
Reviewed by: zhaoqin
llvm-svn: 282141
VPTERNLOG is a ternary instruction with an immediate specifying the logical operation to perform. For each bit position in the 3 source vectors the bit from each source is concatenated together and the resulting 3-bit value is used to select a bit in the immediate. This bit value is written to the result vector.
We can commute this by swapping operands and modifying the immediate. To modify the immediate we need to swap two pairs of bits. The pairs correspond to the locations in the immediate where the commuted operands bits have opposite values and the uncommuted operand has the same value. Bits 0 and 7 will never be swapped since the relevant bits from all sources are the same value.
This refactors and reuses parts of the FMA3 commuting code which is also a three operand instruction.
llvm-svn: 282132
This commit is basically the first step toward what will
RegisterBankInfo look when it gets TableGen'ed.
It introduces a XXXGenRegisterBankInfo.def file that is what TableGen
will issue at some point. Moreover, the RegBanks field in
RegisterBankInfo changed to reflect the static (compile time) aspect of
the information.
llvm-svn: 282131
When initializing an instance of OperandsMapper, instead of using
SmallVector::resize followed by std::fill, use the function that
directly does that in SmallVector.
llvm-svn: 282130
load commands. Added a missing check and made the check for more than
one like other other “more than one” checks. And of course added test cases.
llvm-svn: 282104
Currently, we give up on loop interchange if we encounter a flow dependency
anywhere in the loop list. Worse yet, we don't even track output dependencies.
This patch updates the dependency matrix computation to track flow and output
dependencies in the same way we track anti dependencies.
This improves an internal workload by 2.2x.
Note the loop interchange pass is off by default and it can be enabled with
'-mllvm -enable-loopinterchange'
Differential Revision: https://reviews.llvm.org/D24564
llvm-svn: 282101
With the new LTO API in r278338, we stopped emitting the individual
index files and imports files for some modules in the distributed backend
case (thinlto-index-only plugin option).
Specifically, this is when the linker decides not to include a module in the
link, because it was in an archive library and did not have a strong
reference to it. Not creating the expected output files makes the
distributed build system implementation more difficult, in terms of
checking for the expected outputs of the thin link, and scheduling the
backend jobs. To address this, the gold-plugin will write dummy empty
.thinlto.bc and .imports files for modules not included in the link
(which LTO never sees).
Augmented a gold v1.12+ test, since that version of gold has the handling
for notifying on modules not being included in the link.
llvm-svn: 282100
If we identify an instruction as uniform after vectorization, we know that we
should only use the value corresponding to the first vector lane of each unroll
iteration. However, when scalarizing such instructions, we still produce values
for the other vector lanes. This patch prevents us from generating the unused
scalars.
Differential Revision: https://reviews.llvm.org/D24275
llvm-svn: 282087
Summary: Now that we have more precise debug info, we should change back to use maximum to get basic block weight.
Reviewers: dnovillo
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D24788
llvm-svn: 282084
We still don't really have an equivalent of "AssertXExt" in DAG, so we don't
exploit the guarantees on the receiving side yet, but this should produce
conservatively correct code on iOS ABIs.
llvm-svn: 282069
The only implementation that exists immediately looks it up anyway, and the
information is needed to handle various parameter attributes (stored on the
function itself).
llvm-svn: 282068
The postRA scheduler performs alias analysis to determine if stores and loads
can moved past each other. When a function has more arguments than argument
registers for the calling convention used, excess arguments are spilled onto the
stack. LLVM by default assumes that argument slots are immutable, unless the
function contains a tail call. Without the knowledge of that a function contains
a tail call site, stores and loads to fixed stack slots may be re-ordered
causing the out-going arguments to clobber the incoming arguments before the
incoming arguments are supposed to be dead.
Reviewers: vkalintiris
Differential Review: https://reviews.llvm.org/D24077
llvm-svn: 282063
Summary: AArch64 LLVM assembler emits add instruction without shift bit to calculate the higher 12-bit address of TLS variables in local exec model. This generates wrong code sequence to access TLS variables with thread offset larger than 0x1000.
Reviewers: t.p.northover, peter.smith, rovka
Subscribers: salim.nasser, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D24702
llvm-svn: 282057
It turns out isel is really not robust against having different type profiles for the same opcode. It turns out that if you put an illegal rounding mode(i.e. not CUR_DIRECTION or NO_EXC) on a comiss intrinsic we would generate the FSETCC form with the rounding mode added, but then pattern match to an instruction with ROUND_CUR_DIRECTION.
We can probably get away with just one FSETCCM opcode that always contains the rounding mode and explicitly put ROUND_CUR_DIRECTION in the pattern, but I'll leave that for future work.
With this change the clang tests for the comiss intrinsics that used an incorrect rounding mode of 3 properly fail isel instead of silently doing the wrong thing. Those clang tests will be fixed in a follow up commit and I also plan to add rounding mode checking to clang.
llvm-svn: 282055
There was no way to control its value so it was always FROUND_CURRENT making it unnecessary. The true rounding mode is encoded in the immediate operand of the instruction.
This also removes the pattern from the rb form of the instructions since there is no way to specify the FROUND_NO_EXC rounding mode it required.
llvm-svn: 282052
Summary: In getArgumentAlignment check if the ImmutableCallSite pointer CS is non-null before dereferencing. If CS is 0x0 fall back to the ABI type alignment else compute the alignment as before.
Reviewers: eliben, jpienaar
Subscribers: jlebar, vchuravy, cfe-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D9168
llvm-svn: 282045
Summary:
Emit an empty summary section, instead of no summary section, when
there are no global variables in the index. This ensures that LTO
will treat these files as ThinLTO inputs, instead of as regular
LTO inputs.
In addition to not being what the user likely intended when
compiling with -flto=thin, the current behavior is problematic for
distributed build systems that expect to get ThinLTO index and imports
files back for each input compiled with -flto=thin. Combining into
a single regular LTO module also reduces the backend parallelism.
And in the case where the index was suppressed due to uses in
inline assembly, combining into a single LTO module could provoke
renaming of duplicates that we were trying to prevent by suppressing
the index.
This change required a couple of fixes to handle the empty summary
section.
Reviewers: mehdi_amini
Subscribers: mehdi_amini, llvm-commits, pcc
Differential Revision: https://reviews.llvm.org/D24779
llvm-svn: 282037
TargetMachine::getNameWithPrefix and inline the result into the singular
caller." and "Remove more guts of TargetMachine::getNameWithPrefix and
migrate one check to the TLOF mach-o version." temporarily until I can
get the whole call migrated out of the TargetMachine as we could hit
places where TLOF isn't valid.
This reverts commits r281981 and r281983.
llvm-svn: 282028
Summary:
This is an NFC refactoring change as a precursor to the actual fix for rematerializing in
presence of phi.
https://reviews.llvm.org/D24399
Pasted from review:
findRematerializableChainToBasePointer changed to return the root of the
chain. instead of true or false.
move the PHI matching logic into the caller by inspecting the root return value.
This includes an assertion that the alternate root is in the liveset for the
call.
Tested with current RS4GC tests.
Reviewers: reames, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24780
llvm-svn: 282023
This check caused us to skip adding layout information for calls to
alloca in sspreq/sspstrong mode. We check properly for sspstrong later
on (and add the correct layout info when doing so), so removing this
shouldn't hurt.
No test is included, since testing this using lit seems to require
checking for exact offsets in asm, which is something that the lit tests
for this avoid. If someone cares deeply, I'm happy to write a unittest
or something to cover this, but that feels like overkill.
Patch by Daniel Micay.
Differential Revision: https://reviews.llvm.org/D22714
llvm-svn: 282022
Previously, such section would be marked as SHT_PROGBITS which
makes it impossible to use an initialized C variable declaration
to emit an (allocated) ELF note. The new behavior is also consistent
with ELF assembly parser.
Differential Revision: https://reviews.llvm.org/D24692
llvm-svn: 282010
that use the Mach::dylib_command type for the load commands that are
currently used in the MachOObjectFile constructor.
This contains the missing checks for LC_ID_DYLIB, LC_ID_DYLIB, etc.
load commands and the fields for the Mach::dylib_command type.
Also checks that only an MH_DYLIB or MH_STUB_DYLIB has an
LC_ID_DYLIB load command (and others filetype don’t) and there
is not more than one of these load commands.
llvm-svn: 282008
This reverts part of commit 119e358d9635c8d1f3e7aee67e3ea3b8a62f8db6 by
removing FeatureUseRSqrt et al per request by Eric Christopher
<echristo@gmail.com> (v. http://bit.ly/2cmz6kW).
llvm-svn: 282001
This reverts commit b7d42b0048f65346e9fa37fb65defeea7ce8c337 per request by
Eric Christopher <echristo@gmail.com> (v. http://bit.ly/2cmz6kW).
llvm-svn: 282000
This reverts commit ad8ca1528242e2a4cb363e3779309e70eb7a430e per request by
Eric Christopher <echristo@gmail.com> (v. http://bit.ly/2cmz6kW).
llvm-svn: 281999
This is a follow-up to r281284. Global Variables now can have
!dbg attachements, so ASAN should clone these when generating a
sanitized copy of a global variable.
<rdar://problem/24899262>
llvm-svn: 281994
CodeView has an S_COMPILE3 record to identify the compiler and source language of the compiland. This record comes first in the debug$S section for the compiland. The debuggers rely on this record to know the source language of the code.
There was a little test fallout from introducing a new record into the symbols subsection.
Differential Revision: https://reviews.llvm.org/D24317
llvm-svn: 281990
We would assert that the FP setup CFI used esp/rsp always. This held up in
practice when the code was generated from IR. However, with the integrated
assembler, it is possible to have the input be user specified assembly. In such
a case, we cannot assume that the function implementation has a compact unwind
representation. Loosen the assertion into a check and bail if we cannot
represent the frame pointer in the compact unwinding.
Addresses PR30453!
llvm-svn: 281986
This should match the existing behaviour for passing complicated struct and
array types, in particular HFAs come through like that from Clang.
For C & C++ we still need to somehow support all the weird ABI flags, or at
least those that are present in the IR (signext, byval, ...), and stack-based
parameter passing.
llvm-svn: 281977
The routines llvm::ConvertDebugDeclareToDebugValue() always returned
a true value which was never checked at the call site; change the
function return type to void.
This NFC cleanup was approved in the review https://reviews.llvm.org/D23715
llvm-svn: 281964
SROA doesn't preserve the llvm.mem.parallel_loop_access metadata when it
transforms loads/stores. This patch fixes a couple occurences of this
issue.
(Partially addresses PR28981).
Differential Revision: https://reviews.llvm.org/D23549
llvm-svn: 281960
It is legal to merge instructions with different undef flags; However we
must drop the undef flag from the merged instruction if it isn't present
everywhere.
This fixes http://llvm.org/PR30199
llvm-svn: 281957
When looking at the scribus_1.3 example from https://llvm.org/bugs/show_bug.cgi?id=10584, I noticed that we were spending a large amount of time computing loop exits in LCSSA. This code appears to be written with the assumption that LoopExits are stored in the Loop and thus cheap to query. This is not true, so we should cache the result across the potentially long running loop which tends to visit a small handful of Loops.
On the particular example from 10584, this change drops the time spent in LCSSA computation by about 80%.
Differential Revision: https://reviews.llvm.org/D24509
llvm-svn: 281949
Summary: Callsites in the same basic block should share the same hotness. This patch checks for the hottest callsite in the same basic block, and use the hotness for all callsites in that basic block for early inline decisions. It also fixes the test to add "-S" so theat the "CHECK-NOT" is actually checking the content.
Reviewers: dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24734
llvm-svn: 281927
The OperandsMapper class is used heavy in RegBankSelect and each
instantiation triggered a heap allocation for the array of operands.
Instead, use a SmallVector with a big enough size such that most of the
cases do not have to use dynamically allocated memory.
This improves the compile time of the RegBankSelect pass.
llvm-svn: 281916
Machine programs need a definition of each vreg before reaching a use
(the definition may come from an IMPLICIT_DEF instruction). This class
of errors is not detected by the MachineVerifier because of efficiency
concerns. LiveRangeCalc used to report these problems, make it do that
again (followup to r279625).
Also use report_fatal_error() instead of llvm_unreachable() as the error
reporting is only present in asserts build anyway.
llvm-svn: 281914
Summary: It does not make sense to set equal weights for all unkown branches as we have static branch prediction available.
Reviewers: dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24732
llvm-svn: 281912
Summary: The call target count profile is directly derived from LBR branch->target data. This is more reliable than instruction frequency profiles that could be moved across basic block boundaries. This patches uses call target count profile to annotate call instructions.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24410
llvm-svn: 281911
Summary:
This patch is adding the support for a shadow memory with
dynamically allocated address range.
The compiler-rt needs to export a symbol containing the shadow
memory range.
This is required to support ASAN on windows 64-bits.
Reviewers: kcc, rnk, vitalybuka
Subscribers: kubabrecka, dberris, llvm-commits, chrisha
Differential Revision: https://reviews.llvm.org/D23354
llvm-svn: 281908
Whenever an add/sub immediate needs a fixup, we set that immediate field to zero,
which is correct, but we also set the shift bits to zero, which is not true for
instructions that use lsl #12. This patch makes sure that if lsl #12 was used,
it will appear in the encoding of the instruction.
Differential Revision: https://reviews.llvm.org/D23930
llvm-svn: 281898
Summary:
In case s_branch instruction target is itself backend should emit offset -1 but instead it emit 0.
'''
label:
s_branch label // should emit [0xff,0xff,0x82,0xbf]
'''
Tom, Matt: why are we adjusting fixup values in applyFixup() method instead of processFixup()? processFixup() is calling adjustFixupValue() but does nothing with its result.
Reviewers: vpykhtin, artem.tamazov, tstellarAMD
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl
Differential Revision: https://reviews.llvm.org/D24671
llvm-svn: 281896
When phi nodes are created in the -mem2reg phase, the @llvm.dbg.declare
entries are converted to @llvm.dbg.value entries at the place where the
store instructions existed. However no entry is created to describe
the resulting value of the phi node.
The effect of this is especially noticeable in for loops which have a
constant for the intial value; the loop control variable's location
would be described as the intial constant value in the loop body once
the -mem2reg optimization phase was run.
This change adds the creation of the @llvm.dbg.value entries to describe
variables whose location is the result of a phi node created in -mem2reg.
Also when the phi node is finally lowered to a machine instruction it
is important that the lowered "load" instruction is placed before the
associated DEBUG_VALUE entry describing the value loaded.
Differential Revision: https://reviews.llvm.org/D23715
llvm-svn: 281895
The initial mapping symbol state is set from the triple, but we only checked
for the little-endian thumb triple, so could end up with an ARM mapping symbol
for big-endian thumb.
Differential Revision: https://reviews.llvm.org/D24553
llvm-svn: 281894
ldm and stm instructions always require 4-byte alignment on the pointer, but we
weren't checking this before trying to reduce code-size by replacing a
post-indexed load/store with them. Unfortunately, we were also dropping this
incormation in DAG ISel too, but that's easy enough to fix.
llvm-svn: 281893
We were updating metadata but not IR flags. Because we pick an arbitrary instruction to be the CSE candidate, it comes down to luck (50% or less chance) if this results in broken codegen or not, which is why PR30373 which is actually not the fault of the commit it was bisected down to.
Fixes PR30373.
llvm-svn: 281889
SUBREG_TO_REG is supposed to indicate that the super register has been zeroed, but we can't prove that if we don't know where it came from.
llvm-svn: 281885
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
https://reviews.llvm.org/D23932 (Clang test)
https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 281878
Summary: Previously we reline on inst-combine to remove inlinable invoke instructions. This causes trouble because a few extra optimizations are schedule early that could introduce too much CFG change (e.g. simplifycfg removes too much control flow). This patch handles invoke instruction in-place during sample profile annotation, so that we do not rely on instcombine to remove those invoke instructions.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24409
llvm-svn: 281870
With D24253 we can now use SelectionDAG::SignBitIsZero with vector operations.
This patch uses SelectionDAG::SignBitIsZero to recognise that a zero sign bit means that we can use a sitofp instead of a uitofp (which is not directly support on pre-AVX512 hardware).
While AVX512 does provide support for uitofp, the conversion to sitofp should not cause any regressions.
Differential Revision: https://reviews.llvm.org/D24343
llvm-svn: 281852
Simplified GEP cloning in vectorizeMemoryInstruction().
Added an assertion that checks consecutive GEP, which should have only one loop-variant operand.
Differential Revision: https://reviews.llvm.org/D24557
llvm-svn: 281851
Summary:
This fixes an issue when files are compiled with -flto=thin
at default -O0. We need to rename anonymous globals before attempting
to write the module summary because all values need names for
the summary. This was happening at -O1 and above, but not before
the early exit when constructing the pipeline for -O0.
Also add an internal -prepare-for-thinlto option to enable this
to be tested via opt.
Fixes PR30419.
Reviewers: mehdi_amini
Subscribers: probinson, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D24701
llvm-svn: 281840
We were trying to avoid using a FrameIndex operand in non-pointer
operands in a convoluted way, and would break because of
using TargetFrameIndex. The TargetFrameIndex should only be used
in the case where it makes sense to fold it as part of the addressing
mode, otherwise it requires materialization like a normal constant.
This wasn't working reliably and failed in the added testcase, hitting
the assert when processing the frame index.
The TargetFrameIndex was coming from trying to produce an AssertZext
limiting the maximum stack size. I'm not sure this was correct to begin
with, because it is apparently possible to have a single workitem
dispatch that requires all 4G of private memory.
llvm-svn: 281824
This reduces the number of copies and reg_sequences
when using fp constant vectors. This significantly
reduces the code size in local-stack-alloc-bug.ll
llvm-svn: 281822
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
This is a recommit of r281806 after fixing the accessor to return
a pointer instead of a reference and updating all the call-sites.
llvm-svn: 281813
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
llvm-svn: 281806
Summary: i8, i16, and f16 values are not extended to 32-bit in the HSA kernel ABI.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D24621
llvm-svn: 281789
These clean up some unnecessary or instructions in
cases with complex loops.
In the original testcase I noticed this, the same
or with exec was repeated 5 or 6 times in a row. With
this only one is emitted or sometimes a copy.
llvm-svn: 281786
This is a fix for PR30318.
Clang may generate IR where an alloca is already live when entering a
BB with lifetime.start. In this case, conservatively extend the
alloca lifetime all the way back to the block entry.
llvm-svn: 281784
When trying to recolor a register we may split live-ranges in the
process. When we create new live-ranges we will have to process them,
but when we move a register from Assign to Split, the allocation is not
changed until the whole recoloring session is successful.
Therefore, only push the live-ranges that changed from Assign to
Split when the recoloring is successful.
Same as the previous commit, I was not able to produce a test case that
reproduce the problem with in-tree targets.
Note: The bug has been here since the recoloring scheme has been added
back in r200883 (Feb 2014).
llvm-svn: 281783
When last chance recoloring is used, the list of NewVRegs may not be
empty when calling selectOrSplitImpl. Indeed, another coloring may have
taken place with splitting/spilling in the same recoloring session.
Relax an assertion to take this into account and adapt a condition to
act as if the NewVRegs were local to this selectOrSplitImpl instance.
Unfortunately I am unable to produce a test case for this, I was only
able to reproduce the conditions on an out-of-tree target.
llvm-svn: 281782
Summary:
The main challenge in lowering kernel arguments for AMDGPU is determing the
memory type of the argument. The generic calling convention code assumes
that only legal register types can be stored in memory, but this is not the
case for AMDGPU.
This consolidates all the logic AMDGPU uses for deducing memory types into a single
function. This will make it much easier to support different ABIs in the future.
Reviewers: arsenm
Subscribers: arsenm, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D24614
llvm-svn: 281781
Summary:
mesa3d will use the same kernel calling convention as amdhsa, but it will
handle everything else like the default 'unknown' OS type.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D22783
llvm-svn: 281779
computeKnownBits() already works for integer vectors, so allow vector types when calling that from InstCombine.
I don't think the change to use m_APInt in computeKnownBits is strictly necessary because we do check for
ConstantVector later, but it's more efficient to handle the splat case without needing to loop on vector elements.
This should work with InstSimplify, but doesn't yet, so I made that a FIXME comment on the test for PR24942:
https://llvm.org/bugs/show_bug.cgi?id=24942
Differential Revision: https://reviews.llvm.org/D24677
llvm-svn: 281777
Recommitting after fixing AsmParser initialization and X86 inline asm
error cleanup.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281762
A follow-up patch will rename this pass and the source file accordingly,
but I figured the non-NFC change will be easier to spot in isolation.
Differential Revision: https://reviews.llvm.org/D24641
llvm-svn: 281744
We used to only support instructions with same-type operands.
Instead, use the per-register type information to map each
operand more accurately.
llvm-svn: 281734
Enhance SCEV to compute the trip count for some loops with unknown stride.
Patch by Pankaj Chawla
Differential Revision: https://reviews.llvm.org/D22377
llvm-svn: 281732
When a phi node is finally lowered to a machine instruction it is
important that the lowered "load" instruction is placed before the
associated DEBUG_VALUE entry describing the value loaded.
Renamed the existing SkipPHIsAndLabels to SkipPHIsLabelsAndDebug to
more fully describe that it also skips debug entries. Then used the
"new" function SkipPHIsAndLabels when the debug information should not
be skipped when placing the lowered "load" instructions so that it is
placed before the debug entries.
Differential Revision: https://reviews.llvm.org/D23760
llvm-svn: 281727
Summary:
In runThinLTO we start the task numbering for ThinLTO backend
tasks depending on whether there was also a regular LTO object
(CombinedModule). However, the CombinedModule is moved at
the end of runRegularLTO, so we need to save this information and
pass it into runThinLTO. Otherwise the AddOutput callback to the client
will use the same task number for both the regular LTO object
and the first ThinLTO object, which in gold-plugin caused only
one to be end up in the output filename array and therefore passed
back to gold for the final native link.
Reviewers: pcc, mehdi_amini
Subscribers: mehdi_amini, kromanova
Differential Revision: https://reviews.llvm.org/D24643
llvm-svn: 281725
For compatiblity with binutils, define these instructions to take
two registers with a 16bit unsigned immediate. Both of the registers
have to be same for dahi and dati.
Reviewers: vkalintiris, dsanders, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D21473
llvm-svn: 281724
(and the same for SREM)
This was causing buildbot failures earlier (time outs in the LNT suite).
However, we haven't been able to reproduce this and are suspecting this
was caused by another (reverted) patch.
llvm-svn: 281719
Summary:
`TargetLoweringObjectFile` can be re-used and thus `TargetLoweringObjectFile::Initialize()`
can be called multiple times causing `Mang` pointer memory leak.
Reviewers: echristo
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D24659
llvm-svn: 281718
LazyCallGraph to support repeated, stable iterations, even in the face
of graph updates.
This is particularly important to allow the CGSCC pass manager to walk
the RefSCCs (and thus everything else) in a module more than once. Lots
of unittests and other tests were hard or impossible to write because
repeated CGSCC pass managers which didn't invalidate the LazyCallGraph
would conclude the module was empty after the first one. =[ Really,
really bad.
The interesting thing is that in many ways this simplifies the code. We
can now re-use the same code for handling reference edge insertion
updates of the RefSCC graph as we use for handling call edge insertion
updates of the SCC graph. Outside of adapting to the shared logic for
this (which isn't trivial, but is *much* simpler than the DFS it
replaces!), the new code involves putting newly created RefSCCs when
deleting a reference edge into the cached list in the correct way, and
to re-formulate the iterator to be stable and effective even in the face
of these kinds of updates.
I've updated the unittests for the LazyCallGraph to re-iterate the
postorder sequence and verify that this all works. We even check for
using alternating iterators to trigger the lazy formation of RefSCCs
after mutation has occured.
It's worth noting that there are a reasonable number of likely
simplifications we can make past this. It isn't clear that we need to
keep the "LeafRefSCCs" around any more. But I've not removed that mostly
because I want this to be a more isolated change.
Differential Revision: https://reviews.llvm.org/D24219
llvm-svn: 281716
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 281715
Previous we were issuing an error when linking a module containing
the new Objective-C metadata structure for class properties with an
"old" one.
Now instead we downgrade the module flag so that the Objective-C
runtime does not expect the new metadata structure.
This is consistent with what ld64 is doing on binary files.
Differential Revision: https://reviews.llvm.org/D24620
llvm-svn: 281685
For small, discontiguous local variable regions, CodeView can use a
single defrange record with a gap, rather than having two defrange
records. I expect that this optimization will only have a minor impact
on debug info size.
llvm-svn: 281664
These 2 helper functions were already using APInt internally, so just
change the API and caller to allow folds for splats. The scalar
regression tests look quite thorough, so I just added a couple of
tests to prove that vectors are handled too.
These folds should be grouped with the other cmp+shift folds though.
That can be an NFC follow-up.
llvm-svn: 281663
GlobalOpt is already dead-code-eliminating global definitions. With
this change it also takes care of declarations.
Hopefully this should make it now a strict superset of GlobalDCE.
This is important for LTO/ThinLTO as we don't want the linker to see
"undefined reference" when it processes the input files: it could
prevent proper internalization (or even load an extra file from a
static archive, changing the behavior of the program!).
llvm-svn: 281653