This reverts commit 062ace9764953e9769142c1099281a345f9b6bdc.
Issue with loop info and block removal revealed by polly.
I have a fix for this issue already in another patch, I'll re-roll this
together with that fix, and a test case.
llvm-svn: 283292
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well.
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283274
Summary:
These are analog to the existing LLVMConstExactSDiv and LLVMBuildExactSDiv
functions.
Reviewers: deadalnix, majnemer
Subscribers: majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D25259
llvm-svn: 283269
Summary:
Attempting to fix PR30384.
Take the same approach as in compiler_rt and add a simplified version of __get_cpuid_max.
Including cpuid.h is no longer needed.
Reviewers: echristo, joerg
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D24597
llvm-svn: 283265
The motivation for the change is that we can't have pseudo-global settings for
codegen living in TargetOptions because that doesn't work with LTO.
Ideally, these reciprocal attributes will be moved to the instruction-level via
FMF, metadata, or something else. But making them function attributes is at least
an improvement over the current state.
The ingredients of this patch are:
Remove the reciprocal estimate command-line debug option.
Add TargetRecip to TargetLowering.
Remove TargetRecip from TargetOptions.
Clean up the TargetRecip implementation to work with this new scheme.
Set the default reciprocal settings in TargetLoweringBase (everything is off).
Update the PowerPC defaults, users, and tests.
Update the x86 defaults, users, and tests.
Note that if this patch needs to be reverted, the related clang patch checked in
at r283251 should be reverted too.
Differential Revision: https://reviews.llvm.org/D24816
llvm-svn: 283252
load commands that uses the MachO::encryption_info_command and
MachO::encryption_info_command types but not used in llvm libObject
code but used in llvm tool code.
This includes just LC_ENCRYPTION_INFO and
LC_ENCRYPTION_INFO_64 load commands.
llvm-svn: 283250
AArch64InstrInfo::shouldScheduleAdjacent() determines whether two
instruction can benefit from macroop fusion on apple CPUs. The list
turned out to be incomplete:
- the "rr" variants of the instructions were missing
- even the "rs" variants can have shift value == 0 and behave like the
"rr" variants
This also splits the MacropFusion target feature into
ArithmeticBccFusion and ArithmeticCbzFusion.
Differential Revision: https://reviews.llvm.org/D25142
llvm-svn: 283243
The purpose of the YAML diagnostic output file is to collect information on
optimizations performed, or not performed, for later processing by tools that
help users (and compiler developers) understand how code was optimized. As
such, the diagnostics that appear in the file should not be coupled to what a
user might want to see summarized for them as the compiler runs, and in fact,
because the user likely does not know what optimization diagnostics their tools
might want to use, the user cannot provide a useful filter regardless. As such,
we shouldn't filter the diagnostics going to the output file.
Differential Revision: https://reviews.llvm.org/D25224
llvm-svn: 283236
This patch corresponds to review:
The newly added VSX D-Form (register + offset) memory ops target the upper half
of the VSX register set. The existing ones target the lower half. In order to
unify these and have the ability to target all the VSX registers using D-Form
operations, this patch defines Pseudo-ops for the loads/stores which are
expanded post-RA. The expansion then choses the correct opcode based on the
register that was allocated for the operation.
llvm-svn: 283212
Treat soft-float as unsupported for fast-isel. Additionally, ensure we check
that lowering f32 arguments also considers the case of soft-float mode.
Reviewers: ehostunreach, vkalintiris, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D24505
llvm-svn: 283209
The SMULO/UMULO DAG nodes, when not directly supported by the target,
expand to a multiplication twice as wide. In case that the resulting
type is not legal, an __mul?i3 intrinsic is used. Since the type is
not legal, the legalizer cannot directly call the intrinsic with
the wide arguments; instead, it "pre-lowers" them by splitting them
in halves.
The "pre-lowering" code in essence made assumptions about
the calling convention, specifically that i(N*2) values will be
split into two iN values and passed in consecutive registers in
little-endian order. This, naturally, breaks on a big-endian system,
such as our OR1K out-of-tree backend.
Thanks to James Miller <james@aatch.net> for help in debugging.
Differential Revision: https://reviews.llvm.org/D25223
llvm-svn: 283203
This fixes the inconsistency of the fp denormal option names: in LLVM this was
DenormalType, but in Clang this is DenormalMode which seems better.
Differential Revision: https://reviews.llvm.org/D24906
llvm-svn: 283192
This patch corresponds to review:
https://reviews.llvm.org/D23155
This patch removes the VSHRC register class (based on D20310) and adds
exploitation of the Power9 sub-word integer loads into VSX registers as well
as vector sign extensions.
The new instructions are useful for a few purposes:
Int to Fp conversions of 1 or 2-byte values loaded from memory
Building vectors of 1 or 2-byte integers with values loaded from memory
Storing individual 1 or 2-byte elements from integer vectors
This patch implements all of those uses.
llvm-svn: 283190
Slightly improves the precision of GlobalsAA in certain situations, and
makes the behavior of optimization passes more predictable.
Differential Revision: https://reviews.llvm.org/D24104
llvm-svn: 283165
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
llvm-svn: 283164
WebAssembly has officially switched from being an AST to being a stack
machine. Update various bits of terminology and README.md entries
accordingly.
llvm-svn: 283154
This is to avoid problems with win32 + ELF which surprisingly happens a
lot in practice: If a user just specifies -march on the commandline the
object format changes along with the architecture to ELF in many
instances while the OS stays with the default/host OS.
llvm-svn: 283151
Refactor the code so that the same function can be used for all
instructions with all the same operands for up to 3 operands.
This is going to be useful for cast instructions.
NFC.
llvm-svn: 283144
Each shadow only represents data flow that is restricted to its reaching
def. Propagating more than that could lead to spurious register liveness,
resulting in extra (incorrectly) block live-ins.
llvm-svn: 283143
Windows has no GOT relocations the way elf/darwin has. Some people use
x86_64-pc-win32-macho to build EFI firmware; Do not produce GOT
relocations for this target.
Differential Revision: https://reviews.llvm.org/D24627
llvm-svn: 283140
Summary: LoopSink pass uses some common function in LICM. This patch refactor the LICM code to make it usable by LoopSink pass (https://reviews.llvm.org/D22778).
Reviewers: davidxl, danielcdh, hfinkel, chandlerc
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D24168
llvm-svn: 283134
Splitting the edge is nontrivial because of the landing pad, and we would
currently assert trying to do it.
Differential Revision: https://reviews.llvm.org/D24680
llvm-svn: 283129
This should fix:
https://llvm.org/bugs/show_bug.cgi?id=30433
There are a couple of open questions about the codegen:
1. Should we let scalar ops be scalars and avoid vector constant loads/splats?
2. Should we have a pass to combine constants such as the inverted pair that we have here?
Differential Revision: https://reviews.llvm.org/D25165
llvm-svn: 283119
If the llvm. prefix is dropped other parts of llvm don't see this as
an intrinsic. This means that the number of regular symbols depends
on the context the module is loaded into, which causes LTO to abort.
Fixes PR30509.
llvm-svn: 283117
Retrying after buildbot reset.
To lex hash directives we peek ahead to find component tokens, create a
unified token, and unlex the peeked tokens so the parser does not need
to parse the tokens then. Make sure we do not to lex another hash
directive during peek operation.
This fixes PR28921.
Reviewers: rnk, loladiro
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24839
llvm-svn: 283111
Summary: Added 6 new target hooks for the vectorizer in order to filter types, handle size constraints and decide how to split chains.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, mzolotukhin, wdng, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D24727
llvm-svn: 283099
library call to __aeabi_uidivmod. This is an improved implementation of
r280808, see also D24133, that got reverted because isel was stuck in a loop.
That was caused by the optimisation incorrectly triggering on i64 ints, which
shouldn't happen because there is no 64bit hwdiv support; that put isel's type
legalization and this optimisation in a loop. A native ARM compiler and testing
now shows that this is fixed.
Patch mostly by Pablo Barrio.
Differential Revision: https://reviews.llvm.org/D25077
llvm-svn: 283098
The PPC branch-selection pass, which performs branch relaxation, needs to
account for the padding that might be introduced to satisfy block alignment
requirements. We were assuming that the first block was at offset zero (i.e.
had the alignment of the function itself), but under the ELFv2 ABI, a global
entry function prologue is added to the first block, and it is a
two-instruction sequence (i.e. eight-bytes long). If the function has 16-byte
alignment, the fact that the first block is eight bytes offset from the start
of the function is relevant to calculating where padding will be added in
between later blocks.
Unfortunately, I don't have a small test case.
llvm-svn: 283086
I don't know for sure that we truly needs this, but its the only vector load that isn't rematerializable. Making it consistent allows it to not be a special case in the td files.
llvm-svn: 283083
This was first landed in rL283058 and subsequenlty reverted since a
change this depends on (rL283057) was buggy and had to be reverted.
llvm-svn: 283079
This change teaches getEquivalentICmp to be smarter about generating
ICMP_NE and ICMP_EQ predicates.
An earlier version of this change was landed as rL283057 which had a
use-after-free bug. This new version has a fix for that bug, and a (C++
unittests/) test case that would have triggered it rL283057.
llvm-svn: 283078
To allow broadcast loads of a non-zero'th vector element, lowerVectorShuffleAsBroadcast can replace a load with a new load with an adjusted address, but unfortunately we weren't ensuring that the new load respected the same dependencies.
This patch adds a TokenFactor and updates all dependencies of the old load to reference the new load instead.
Bug found during internal testing.
Differential Revision: https://reviews.llvm.org/D25039
llvm-svn: 283070
They've broken the sanitizer-bootstrap bots. Reverting while I investigate.
Original commit messages:
r283057: "[ConstantRange] Make getEquivalentICmp smarter"
r283058: "[SCEV] Rely on ConstantRange instead of custom logic; NFCI"
llvm-svn: 283062
This change enables soft-float for PowerPC64, and also makes soft-float disable
all vector instruction sets for both 32-bit and 64-bit modes. This latter part
is necessary because the PPC backend canonicalizes many Altivec vector types to
floating-point types, and so soft-float breaks scalarization support for many
operations. Both for embedded targets and for operating-system kernels desiring
soft-float support, it seems reasonable that disabling hardware floating-point
also disables vector instructions (embedded targets without hardware floating
point support are unlikely to have Altivec, etc. and operating system kernels
desiring not to use floating-point registers to lower syscall cost are unlikely
to want to use vector registers either). If someone needs this to work, we'll
need to change the fact that we promote many Altivec operations to act on
v4f32. To make it possible to disable Altivec when soft-float is enabled,
hardware floating-point support needs to be expressed as a positive feature,
like the others, and not a negative feature, because target features cannot
have dependencies on the disabling of some other feature. So +soft-float has
now become -hard-float.
Fixes PR26970.
llvm-svn: 283060
Now we can commute to BLENDPD/BLENDPS on SSE41+ targets if necessary, so simplify the combine matching where we can.
This required me to add a couple of scalar math movsd/moss fold patterns that hadn't been needed in the past.
llvm-svn: 283038
Instead of selecting between MOVSD/MOVSS and BLENDPD/BLENDPS at shuffle lowering by subtarget this will help us select the instruction based on actual commutation requirements.
We could possibly add BLENDPD/BLENDPS -> MOVSD/MOVSS commutation and MOVSD/MOVSS memory folding using a similar approach if it proves useful
I avoided adding AVX512 handling as I'm not sure when we should be making use of VBLENDPD/VBLENDPS on EVEX targets
llvm-svn: 283037
-Remove OptForSize. Not all of the backend follows the same rules for creating broadcasts and there is no conflicting pattern.
-Don't stop selecting VEX VMOVDDUP when AVX512 is supported. We need VLX for EVEX VMOVDDUP.
-Only use VMOVDDUP for v2i64 broadcasts if AVX2 is not supported.
llvm-svn: 283020