Summary:
Rework the GMIR documentation to focus more on the end user than the
implementation and tie it in to the MIR document. There was also some
out-of-date information which has been removed.
The quality of the GenericOpcode reference is highly variable and drops
sharply as I worked through them all but we've got to start somewhere :-).
It would be great if others could expand on this too as there is an awful
lot to get through.
Also fix a typo in the definition of G_FLOG. Previously, the comments said
we had two base-2's (G_FLOG and G_FLOG2).
Reviewers: aemerson, volkan, rovka, arsenm
Reviewed By: rovka
Subscribers: wdng, arphaman, jfb, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69545
Summary:
This is largely based off of the slides from the keynote
Depends on D69545
Reviewers: volkan, rovka, arsenm
Subscribers: wdng, arphaman, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69644
--only-keep-debug produces a debug file as the output that only
preserves contents of sections useful for debugging purposes (the
binutils implementation preserves SHT_NOTE and non-SHF_ALLOC sections),
by changing their section types to SHT_NOBITS and rewritting file
offsets.
See https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
The intended use case is:
```
llvm-objcopy --only-keep-debug a a.dbg
llvm-objcopy --strip-debug a b
llvm-objcopy --add-gnu-debuglink=a.dbg b
```
The current layout algorithm is incapable of deleting contents and
shrinking segments, so it is not suitable for implementing the
functionality.
This patch adds a new algorithm which assigns sh_offset to sections
first, then modifies p_offset/p_filesz of program headers. It bears a
resemblance to lld/ELF/Writer.cpp.
Reviewed By: jhenderson, jakehehrlich
Differential Revision: https://reviews.llvm.org/D67137
-mvzeroupper will force the vzeroupper insertion pass to run on
CPUs that normally wouldn't. -mno-vzeroupper disables it on CPUs
where it normally runs.
To support this with the default feature handling in clang, we
need a vzeroupper feature flag in X86.td. Since this flag has
the opposite polarity of the fast-partial-ymm-or-zmm-write we
used to use to disable the pass, we now need to add this new
flag to every CPU except KNL/KNM and BTVER2 to keep identical
behavior.
Remove -fast-partial-ymm-or-zmm-write which is no longer used.
Differential Revision: https://reviews.llvm.org/D69786
This reverts commit 004ed2b0d1.
Original commit hash 6d03890384
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
https://reviews.llvm.org/D67723
As discussed in https://bugs.llvm.org/show_bug.cgi?id=43870,
this transform is missing a crucial legality check:
the old (non-countable) loop would early-return upon first mismatch,
but there is no such guarantee for bcmp/memcmp.
We'd need to ensure that [PtrA, PtrA+NBytes) and [PtrB, PtrB+NBytes)
are fully dereferenceable memory regions. But that would limit
the transform to constant loop trip counts and would further
cripple it because dereferenceability analysis is *very* partial.
Furthermore, even if all that is done, every single test
would need to be rewritten from scratch.
So let's just give up.
Summary: A lot of this is work in progress...
Reviewers: kcc, pcc
Subscribers: cryptoad, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69289
This works around a bug in Debian's patchset for glibc. The bug is
described in detail in the upstream debian bug:
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=943798, but the short
version of it is that glibc on any Debian based distro don't load
libraries unless it has a .ARM.attribute section.
Reviewed by: jhenderson, rupprecht, MaskRay, jakehehrlich
Differential Revision: https://reviews.llvm.org/D69188
Patch by Tobias Hieta.
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
See https://bugs.llvm.org/show_bug.cgi?id=42344
Reviewers: rnk
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67723
The legalizer page was in a fairly good state. I've mostly just inlined
some information as a note and removed a reference to potential future
work that I think is very unlikely to be done (it's very hard to tell if
a pattern or set of patterns fully covers a node due to C++ predicates).
Also added a note that 'selectable' doesn't mean that InstructionSelect
must do it.
Summary:
Delete the BasicBlockPass and BasicBlockManager, all its dependencies and update documentation.
The BasicBlockManager was improperly tested and found to be potentially broken, and was deprecated as of rL373254.
In light of the switch to the new pass manager coming before the next release, this patch is a first cleanup of the LegacyPassManager.
Reviewers: chandlerc, echristo
Subscribers: mehdi_amini, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69121
Summary:
This extends the rules for when a call instruction is deemed to be an
FPMathOperator, which is based on the type of the call (i.e. the return
type of the function being called). Previously we only allowed
floating-point and vector-of-floating-point types. Now we also allow
arrays (nested to any depth) of floating-point and
vector-of-floating-point types.
This was motivated by llpc, the pipeline compiler for AMD GPUs
(https://github.com/GPUOpen-Drivers/llpc). llpc has many math library
functions that operate on vectors, typically represented as <4 x float>,
and some that operate on matrices, typically represented as
[4 x <4 x float>], and it's useful to be able to decorate calls to all
of them with fast math flags.
Reviewers: spatel, wristow, arsenm, hfinkel, aemerson, efriedma, cameron.mcinally, mcberg2017, jmolloy
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69161
Add the `-whitelist-filename-regex` option to restrict coverage
reporting to file paths that match a whitelist regex.
Patch by Michael Daniels!
rdar://56720320
This patch adds support for deleted C++ special member functions in
clang and llvm. Also added Defaulted member encodings for future
support for defaulted member functions.
Patch by Sourabh Singh Tomar!
Differential Revision: https://reviews.llvm.org/D69215
I had hoped that I could have some
```
.. code-block:: MIR
```
sections for MIR examples which causes a warning about pygments not
supporting it but we have warnings treated as errors
Summary:
I haven't refreshed the Function Calls section as I don't feel I have
sufficient knowledge of that area. It would be appreciated if someone could
review that section.
Note: I'm aware that pygments doesn't support 'mir' as used in one of the
code-block directives. This currently emits a warning and I decided to
keep it to enable finding them later. Maybe we can teach pygments to
support it.
Depends on D69456
Reviewers: volkan, aditya_nandakumar
Subscribers: rovka, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69457
Summary:
Rewrite the pipeline overview to be more focused on the structure and
flexibility as well as highlight the increased usefulness of
MachineVerifier and increased testability resulting from the smaller
incremental passes approach.
The diagrams are lifted from the slides for the LLVMDev 2019 talk
'Generating Optimized Code with GlobalISel' and adapted to be readable on
the white background used in the docs.
Reviewers: volkan
Subscribers: rovka, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69456
Emit a remarks section by default for the following formats:
* bitstream
* yaml-strtab
while still providing -remarks-section=<bool> to override the defaults.
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
This extension point is not needed. Provide the equivalent option
through `CMAKE_CXX_STANDARD` which mirrors the previous extension point. Rely on
CMake to provide the check for the compiler instead.
This patch was reviewed and approved by chandlerc.
"Getting Started with the LLVM System" is the first point of contact for many newcomers in the LLVM community.
* Make the first two paragraphs more welcoming
* Use more inclusive language
The llvm-ar command guide had not been updated in some time, it was
missing current functionality and contained information that was out
of date. This change:
- Updates the use of reStructuredText directives, as seen in other tools
command guides.
- Updates the command synopsis.
- Updates the descriptions of the tool behaviour.
- Updates the options section.
- Adds details of MRI script functionality.
- Removes the sections "Standards" and "File Format"
Differential Revision: https://reviews.llvm.org/D68998
llvm-svn: 375412
Summary: GNU objcopy accepts the --wildcard flag to allow wildcard matching on symbol-related flags. (Note: it's implicitly true for section flags).
The basic syntax is to allow *, ?, \, and [] which work similarly to how they work in a shell. Additionally, starting a wildcard with ! causes that wildcard to prevent it from matching a flag.
Use an updated GlobPattern in libSupport to handle these patterns. It does not fully match the `fnmatch` used by GNU objcopy since named character classes (e.g. `[[:digit:]]`) are not supported, but this should support most existing use cases (mostly just `*` is what's used anyway).
Reviewers: jhenderson, MaskRay, evgeny777, espindola, alexshap
Reviewed By: MaskRay
Subscribers: nickdesaulniers, emaste, arichardson, hiraditya, jakehehrlich, abrachet, seiya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66613
llvm-svn: 375169
Since GNU ar 2.31, the 't' operation prints member offsets beside file
names if the 'O' modifier is specified. 'O' is ignored for thin
archives.
Reviewed By: gbreynoo, ruiu
Differential Revision: https://reviews.llvm.org/D69087
llvm-svn: 375106
Remove dead virtual functions from vtables with
replaceNonMetadataUsesWith, so that CGProfile metadata gets cleaned up
correctly.
Original commit message:
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 375094
When on windows gnu-ar treats member names as case insensitive. This
commit implements the same behaviour.
Differential Revision: https://reviews.llvm.org/D68033
llvm-svn: 375002
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
Summary:
This is a recommit, this originally landed in rL370454 but was
subsequently reverted in rL370788 due to
https://bugs.llvm.org/show_bug.cgi?id=43206
The reduced testcase was added to bcmp-negative-tests.ll
as @pr43206_different_loops - we must ensure that the SCEV's
we got are both for the same loop we are currently investigating.
Original commit message:
@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.
In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.
libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ
libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)
So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}
```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
#include "benchmark/benchmark.h"
template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
for (; a != a_end; ++a, ++b) {
if (*a != *b) return false;
}
return true;
}
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct Identical {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto Tmp = getVectorOfRandomNumbers<T>(count);
return std::make_pair(Tmp, std::move(Tmp));
}
};
struct InequalHalfway {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto V0 = getVectorOfRandomNumbers<T>(count);
auto V1 = V0;
V1[V1.size() / size_t(2)]++; // just change the value.
return std::make_pair(std::move(V0), std::move(V1));
}
};
template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
benchmark::DoNotOptimize(is_equal);
}
state.SetComplexityN(Length);
state.counters["eltcnt"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["eltcnt/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = []() {
for (const benchmark::CPUInfo::CacheInfo& I :
benchmark::CPUInfo::Get().caches) {
if (I.level == 2) return I.size;
}
return 0;
}();
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 432131 ns 432101 ns 1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO 0.86 N 0.86 N
BM_bcmp<uint8_t, Identical>_RMS 8 % 8 %
<...>
BM_bcmp<uint16_t, Identical>/256000 161408 ns 161409 ns 4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO 0.67 N 0.67 N
BM_bcmp<uint16_t, Identical>_RMS 25 % 25 %
<...>
BM_bcmp<uint32_t, Identical>/128000 81497 ns 81488 ns 8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO 0.71 N 0.71 N
BM_bcmp<uint32_t, Identical>_RMS 42 % 42 %
<...>
BM_bcmp<uint64_t, Identical>/64000 50138 ns 50138 ns 10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO 0.84 N 0.84 N
BM_bcmp<uint64_t, Identical>_RMS 27 % 27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 192405 ns 192392 ns 3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.38 N 0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 3 % 3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 127858 ns 127860 ns 5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 0 % 0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 49140 ns 49140 ns 14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.40 N 0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 18 % 18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 32101 ns 32099 ns 21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 1 % 1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 18593 ns 18590 ns 37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO 0.04 N 0.04 N
BM_bcmp<uint8_t, Identical>_RMS 37 % 37 %
<...>
BM_bcmp<uint16_t, Identical>/256000 18950 ns 18948 ns 37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO 0.08 N 0.08 N
BM_bcmp<uint16_t, Identical>_RMS 34 % 34 %
<...>
BM_bcmp<uint32_t, Identical>/128000 18627 ns 18627 ns 37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO 0.16 N 0.16 N
BM_bcmp<uint32_t, Identical>_RMS 35 % 35 %
<...>
BM_bcmp<uint64_t, Identical>/64000 18855 ns 18855 ns 37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO 0.32 N 0.32 N
BM_bcmp<uint64_t, Identical>_RMS 33 % 33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 9570 ns 9569 ns 73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.02 N 0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 9547 ns 9547 ns 74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.04 N 0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 9396 ns 9394 ns 73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.08 N 0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 30 % 30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 9499 ns 9498 ns 73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.16 N 0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 28 % 28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark Time CPU Time Old Time New CPU Old CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 -0.9570 -0.9570 432131 18593 432101 18590
<...>
BM_bcmp<uint16_t, Identical>/256000 -0.8826 -0.8826 161408 18950 161409 18948
<...>
BM_bcmp<uint32_t, Identical>/128000 -0.7714 -0.7714 81497 18627 81488 18627
<...>
BM_bcmp<uint64_t, Identical>/64000 -0.6239 -0.6239 50138 18855 50138 18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 -0.9503 -0.9503 192405 9570 192392 9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 -0.9253 -0.9253 127858 9547 127860 9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 -0.8088 -0.8088 49140 9396 49140 9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 -0.7041 -0.7041 32101 9499 32099 9498
```
What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
linearly decreases with element size.
For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
As it can be seen from the full output {F8768210}, the `memcmp()` is almost
universally worse, independent of the element size (and thus buffer size) when
element count is less than 8.
So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.
Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp
Program result-new
MultiSourc...Benchmarks/7zip/7zip-benchmark 79.00
MultiSource/Applications/d/make_dparser 3.00
SingleSource/UnitTests/vla 2.00
MultiSource/Applications/Burg/burg 1.00
MultiSourc.../Applications/JM/lencod/lencod 1.00
MultiSource/Applications/lemon/lemon 1.00
MultiSource/Benchmarks/Bullet/bullet 1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs 1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc 1.00
MultiSourc...Prolangs-C/simulator/simulator 1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text
Program result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test 753.00 833.00 10.6%
test-suite...marks/7zip/7zip-benchmark.test 1001697.00 966657.00 -3.5%
test-suite...ngs-C/simulator/simulator.test 32369.00 32321.00 -0.1%
test-suite...plications/d/make_dparser.test 89585.00 89505.00 -0.1%
test-suite...ce/Applications/Burg/burg.test 40817.00 40785.00 -0.1%
test-suite.../Applications/lemon/lemon.test 47281.00 47249.00 -0.1%
test-suite...TimberWolfMC/timberwolfmc.test 250065.00 250113.00 0.0%
test-suite...chmarks/MallocBench/gs/gs.test 149889.00 149873.00 -0.0%
test-suite...ications/JM/lencod/lencod.test 769585.00 769569.00 -0.0%
test-suite.../Benchmarks/Bullet/bullet.test 770049.00 770049.00 0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128 NaN NaN nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32 NaN NaN nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4 NaN NaN nan%
Geomean difference nan%
result-old result-new diff
count 1.000000e+01 10.00000 10.000000
mean 3.152090e+05 311695.40000 0.006749
std 3.790398e+05 372091.42232 0.036605
min 7.530000e+02 833.00000 -0.034981
25% 4.243300e+04 42401.00000 -0.000866
50% 1.197370e+05 119689.00000 -0.000392
75% 6.397050e+05 639705.00000 -0.000005
max 1.001697e+06 966657.00000 0.106242
```
I don't have timings though.
And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.
Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???
Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet
Reviewed By: courbet
Subscribers: miyuki, hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61144
llvm-svn: 374662
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 374539
The FileCheck utility is enhanced to support a `--ignore-case`
option. This is useful in cases where the output of Unix tools
differs in case (e.g. case not specified by Posix).
Reviewers: Bigcheese, jakehehrlich, rupprecht, espindola, alexshap, jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D68146
llvm-svn: 374538
Bring back `--threads` option which was lost in the move of the
command line argument parsing code to cl_arguments.py. Update docs
since `--workers` is preferred.
llvm-svn: 374432
Summary:
Just realized that most of the links in this page are deprecated.
So update some important reference here:
* adding PowerISA 3.0B/2.7B
* adding P8/P9 User Manual
* ELFv2 ABI and errata
Move deprecated ones into "Other documents..".
Reviewers: #powerpc, hfinkel, nemanjai
Reviewed By: hfinkel
Subscribers: shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68817
llvm-svn: 374428
Summary:
As disscused in https://bugs.llvm.org/show_bug.cgi?id=43219,
i believe it may be somewhat useful to show //some// aggregates
over all the sea of statistics provided.
Example:
```
Average Wait times (based on the timeline view):
[0]: Executions
[1]: Average time spent waiting in a scheduler's queue
[2]: Average time spent waiting in a scheduler's queue while ready
[3]: Average time elapsed from WB until retire stage
[0] [1] [2] [3]
0. 3 1.0 1.0 4.7 vmulps %xmm0, %xmm1, %xmm2
1. 3 2.7 0.0 2.3 vhaddps %xmm2, %xmm2, %xmm3
2. 3 6.0 0.0 0.0 vhaddps %xmm3, %xmm3, %xmm4
3 3.2 0.3 2.3 <total>
```
I.e. we average the averages.
Reviewers: andreadb, mattd, RKSimon
Reviewed By: andreadb
Subscribers: gbedwell, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68714
llvm-svn: 374361
The FileCheck utility is enhanced to support a `--ignore-case`
option. This is useful in cases where the output of Unix tools
differs in case (e.g. case not specified by Posix).
Reviewers: Bigcheese, jakehehrlich, rupprecht, espindola, alexshap, jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D68146
llvm-svn: 374339
Summary:
Quote from http://eel.is/c++draft/expr.add#4:
```
4 When an expression J that has integral type is added to or subtracted
from an expression P of pointer type, the result has the type of P.
(4.1) If P evaluates to a null pointer value and J evaluates to 0,
the result is a null pointer value.
(4.2) Otherwise, if P points to an array element i of an array object x with n
elements ([dcl.array]), the expressions P + J and J + P
(where J has the value j) point to the (possibly-hypothetical) array
element i+j of x if 0≤i+j≤n and the expression P - J points to the
(possibly-hypothetical) array element i−j of x if 0≤i−j≤n.
(4.3) Otherwise, the behavior is undefined.
```
Therefore, as per the standard, applying non-zero offset to `nullptr`
(or making non-`nullptr` a `nullptr`, by subtracting pointer's integral value
from the pointer itself) is undefined behavior. (*if* `nullptr` is not defined,
i.e. e.g. `-fno-delete-null-pointer-checks` was *not* specified.)
To make things more fun, in C (6.5.6p8), applying *any* offset to null pointer
is undefined, although Clang front-end pessimizes the code by not lowering
that info, so this UB is "harmless".
Since rL369789 (D66608 `[InstCombine] icmp eq/ne (gep inbounds P, Idx..), null -> icmp eq/ne P, null`)
LLVM middle-end uses those guarantees for transformations.
If the source contains such UB's, said code may now be miscompiled.
Such miscompilations were already observed:
* https://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190826/687838.html
* https://github.com/google/filament/pull/1566
Surprisingly, UBSan does not catch those issues
... until now. This diff teaches UBSan about these UB's.
`getelementpointer inbounds` is a pretty frequent instruction,
so this does have a measurable impact on performance;
I've addressed most of the obvious missing folds (and thus decreased the performance impact by ~5%),
and then re-performed some performance measurements using my [[ https://github.com/darktable-org/rawspeed | RawSpeed ]] benchmark:
(all measurements done with LLVM ToT, the sanitizer never fired.)
* no sanitization vs. existing check: average `+21.62%` slowdown
* existing check vs. check after this patch: average `22.04%` slowdown
* no sanitization vs. this patch: average `48.42%` slowdown
Reviewers: vsk, filcab, rsmith, aaron.ballman, vitalybuka, rjmccall, #sanitizers
Reviewed By: rsmith
Subscribers: kristof.beyls, nickdesaulniers, nikic, ychen, dtzWill, xbolva00, dberris, arphaman, rupprecht, reames, regehr, llvm-commits, cfe-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D67122
llvm-svn: 374293
Adds links to Getting Started/Tutorials, User Guides, and Reference documentation pages to sidebar. Also adds a new section for LLVM IR on the Reference documentation page.
llvm-svn: 374214
Summary:
This adds a `-max-configs-per-opcode` option to limit the number of
configs per opcode.
Reviewers: gchatelet
Subscribers: tschuett, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68642
llvm-svn: 374054
it just happened to break the bot right when I did my push. So I'm undoing
this mornings incorrect push. I've also kicked off an email to hopefully
get the bot fixed the correct way.
llvm-svn: 374049
When the target option GuaranteedTailCallOpt is specified, calls with
the fastcc calling convention will be transformed into tail calls if
they are in tail position. This diff adds a new calling convention,
tailcc, currently supported only on X86, which behaves the same way as
fastcc, except that the GuaranteedTailCallOpt flag does not need to
enabled in order to enable tail call optimization.
Patch by Dwight Guth <dwight.guth@runtimeverification.com>!
Reviewed By: lebedev.ri, paquette, rnk
Differential Revision: https://reviews.llvm.org/D67855
llvm-svn: 373976
Earlier in the year intrinsics for lrint, llrint, lround and llround were
added to llvm. The constrained versions are now implemented here.
Reviewed by: andrew.w.kaylor, craig.topper, cameron.mcinally
Approved by: craig.topper
Differential Revision: https://reviews.llvm.org/D64746
llvm-svn: 373900
Removes Programming Documentation page. Also moves existing topics on Programming Documentation page to User Guides and Reference pages.
llvm-svn: 373856
Fixes PR43181. This option was recently added to GNU objcopy (binutils
PR24942).
`llvm-objcopy -I binary -O elf64-x86-64 --set-section-alignment .data=8` can set the alignment of .data.
Reviewed By: grimar, jhenderson, rupprecht
Differential Revision: https://reviews.llvm.org/D67656
llvm-svn: 373461
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.
Differential Revision: https://reviews.llvm.org/D66526
The cause of the test failure was resolved.
llvm-svn: 373427
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.
Differential Revision: https://reviews.llvm.org/D66526
llvm-svn: 373317
D68110 added --arch-specific (supported by GNU readelf) and made
--arm-attributes an alias for it. The tests were later migrated to use
--arch-specific.
Note, llvm-readelf --arch-specific currently just uses llvm-readobj
style output for ARM attributes. The readelf-style output is not
implemented.
Reviewed By: compnerd, kongyi, rupprecht
Differential Revision: https://reviews.llvm.org/D68196
llvm-svn: 373291
Summary: The constraint goes up to regs d15 and q7, not d16 and q8.
Subscribers: kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68090
llvm-svn: 373228
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.
Differential Revision: https://reviews.llvm.org/D66526
llvm-svn: 373183
Moves existing article links on the Programming, Subsystem, and Reference documentation pages to new locations. Also moves Github Repository and Publications links to the sidebar.
llvm-svn: 373169