This reverts commit ada6595a526d71df04988eb0a4b4fe84df398ded.
This needs a simple probability check because there are some cases where it is
not profitable.
llvm-svn: 291695
When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well.
Differential revision: https://reviews.llvm.org/D27742
llvm-svn: 291609
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
This is based on the following equivalences:
select(C0 & C1, X, Y) <=> select(C0, select(C1, X, Y), Y)
select(C0 | C1, X, Y) <=> select(C0, X, select(C1, X, Y))
Many target cannot perform and/or on the CPU flags and therefore the
right side should be choosen to avoid materializign the i1 flags in an
integer register. If the target can perform this operation efficiently
we normalize to the left form.
Differential Revision: http://reviews.llvm.org/D7622
llvm-svn: 231507
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
which have successfully round-tripped through the combine phase, and use
this to ensure all operands to DAG nodes are visited by the combiner,
even if they are only added during the combine phase.
This is critical to have the combiner reach nodes that are *introduced*
during combining. Previously these would sometimes be visited and
sometimes not be visited based on whether they happened to end up on the
worklist or not. Now we always run them through the combiner.
This fixes quite a few bad codegen test cases lurking in the suite while
also being more principled. Among these, the TLS codegeneration is
particularly exciting for programs that have this in the critical path
like TSan-instrumented binaries (although I think they engineer to use
a different TLS that is faster anyways).
I've tried to check for compile-time regressions here by running llc
over a merged (but not LTO-ed) clang bitcode file and observed at most
a 3% slowdown in llc. Given that this is essentially a worst case (none
of opt or clang are running at this phase) I think this is tolerable.
The actual LTO case should be even less costly, and the cost in normal
compilation should be negligible.
With this combining logic, it is possible to re-legalize as we combine
which is necessary to implement PSHUFB formation on x86 as
a post-legalize DAG combine (my ultimate goal).
Differential Revision: http://reviews.llvm.org/D4638
llvm-svn: 213898
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
llvm-svn: 186258
The adc/sbb optimization is to able to convert following expression
into a single adc/sbb instruction:
(ult) ... = x + 1 // where the ult is unsigned-less-than comparison
(ult) ... = x - 1
This change is to flip the "x >u y" (i.e. ugt comparison) in order
to expose the adc/sbb opportunity.
llvm-svn: 167180
We perform the following:
1> Use SUB instead of CMP for i8,i16,i32 and i64 in ISel lowering.
2> Modify MachineCSE to correctly handle implicit defs.
3> Convert SUB back to CMP if possible at peephole.
Removed pattern matching of (a>b) ? (a-b):0 and like, since they are handled
by peephole now.
rdar://11873276
llvm-svn: 161462
It is possible that an instruction can use and update EFLAGS.
When checking the safety, we should check the usage of EFLAGS first before
declaring it is safe to optimize due to the update.
llvm-svn: 160912
It is redundant; RegisterCoalescer will do the remat if it can't eliminate
the copy. Collected instruction counts before and after this. A few extra
instructions are generated due to spilling but it is normal to see these kinds
of changes with almost any small codegen change, according to Jakob.
This also fixed rdar://11830760 where xor is expected instead of movi0.
llvm-svn: 160749
Updated OptimizeCompare in peephole to remove redundant cmp against zero.
We only remove Compare if CF and OF are not used.
rdar://11855129
llvm-svn: 160454
getCondFromSETOpc, getCondFromCMovOpc, getSETFromCond, getCMovFromCond
No functional change intended.
If we want to update the condition code of CMOV|SET|Jcc, we first analyze the
opcode to get the condition code, then update the condition code, finally
synthesize the new opcode form the new condition code.
llvm-svn: 159955
It is safe if EFLAGS is killed or re-defined.
When we are done with the basic block, check whether EFLAGS is live-out.
Do not optimize away cmp if EFLAGS is live-out.
llvm-svn: 159888
For each Cmp, we check whether there is an earlier Sub which make Cmp
redundant. We handle the case where SUB operates on the same source operands as
Cmp, including the case where the two source operands are swapped.
llvm-svn: 159838
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
llvm-svn: 158126
The commit is intended to fix rdar://11540023.
It is implemented as part of peephole optimization. We can actually implement
this in the SelectionDAG lowering phase.
llvm-svn: 158122
This patch will optimize the following:
sub r1, r3
cmp r3, r1 or cmp r1, r3
bge L1
TO
sub r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can eliminate
the "cmp" instruction.
llvm-svn: 157831
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
llvm-svn: 157755
to catch cases like:
%reg1024<def> = MOV r1
%reg1025<def> = MOV r0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
By commuting ADD, it let coalescer eliminate all of the copies. However, there
was a bug in the heuristics where it ended up commuting the ADD in:
%reg1024<def> = MOV r0
%reg1025<def> = MOV 0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
That did no benefit but rather ensure the last MOV would not be coalesced.
rdar://11355268
llvm-svn: 156048
This patch will optimize the following cases on X86
(a > b) ? (a-b) : 0
(a >= b) ? (a-b) : 0
(b < a) ? (a-b) : 0
(b <= a) ? (a-b) : 0
FROM
movl %edi, %ecx
subl %esi, %ecx
cmpl %edi, %esi
movl $0, %eax
cmovll %ecx, %eax
TO
xorl %eax, %eax
subl %esi, %edi
cmovll %eax, %edi
movl %edi, %eax
rdar: 10734411
llvm-svn: 155919
(x > y) ? x : y
=>
(x >= y) ? x : y
So for something like
(x - y) > 0 : (x - y) ? 0
It will be
(x - y) >= 0 : (x - y) ? 0
This makes is possible to test sign-bit and eliminate a comparison against
zero. e.g.
subl %esi, %edi
testl %edi, %edi
movl $0, %eax
cmovgl %edi, %eax
=>
xorl %eax, %eax
subl %esi, $edi
cmovsl %eax, %edi
rdar://10633221
llvm-svn: 147512