This pattern turned a vector sqrt/rcp/rsqrt operation of sse_load_f32/f64 into the the scalar instruction for the operation and put undef into the upper bits. For correctness, the resulting code should still perform the sqrt/rcp/rsqrt on the upper bits after the load is extended since that's what the operation asked for. Particularly in the case where the upper bits are 0, in that case we need calculate the sqrt/rcp/rsqrt of the zeroes and keep the result in the upper-bits. This implies we should be using the packed instruction still.
The only test case for this pattern is one I just added so there was no coverage of this.
llvm-svn: 288784
This occurs due to a pattern that uses sse_load_f32/f64 with vector sqrt/rcp/rsqrt operations and turns them into scalar instructions. Perhaps for the case were the upper bits come from undef this is ok. I believe a (vzmovl load64) would do the same thing but those seems to become vzload instead and selectScalarSSELoad doesn't handle that today. In that case we should be performing the vector operation on the zeros in the upper bits which is not equivalent to using a scalar instruction.
I will remove this pattern in a follow up patch. There appears to be no other test content for it.
llvm-svn: 288783
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.
Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.
On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.
Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.
The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.
Unit tests are updated so they don't depend on SD scheduling heuristics.
llvm-svn: 192750