This renames the function for checking FP function attribute values and also
adds more build attribute tests (which are in separate files because build
attributes are set per file).
Differential Revision: https://reviews.llvm.org/D25625
llvm-svn: 284571
Summary:
The original heuristic to break critical edge during machine sink is relatively conservertive: when there is only one instruction sinkable to the critical edge, it is likely that the machine sink pass will not break the critical edge. This leads to many speculative instructions executed at runtime. However, with profile info, we could model the splitting benefits: if the critical edge has 50% taken rate, it would always be beneficial to split the critical edge to avoid the speculated runtime instructions. This patch uses profile to guide critical edge splitting in machine sink pass.
The performance impact on speccpu2006 on Intel sandybridge machines:
spec/2006/fp/C++/444.namd 25.3 +0.26%
spec/2006/fp/C++/447.dealII 45.96 -0.10%
spec/2006/fp/C++/450.soplex 41.97 +1.49%
spec/2006/fp/C++/453.povray 36.83 -0.96%
spec/2006/fp/C/433.milc 23.81 +0.32%
spec/2006/fp/C/470.lbm 41.17 +0.34%
spec/2006/fp/C/482.sphinx3 48.13 +0.69%
spec/2006/int/C++/471.omnetpp 22.45 +3.25%
spec/2006/int/C++/473.astar 21.35 -2.06%
spec/2006/int/C++/483.xalancbmk 36.02 -2.39%
spec/2006/int/C/400.perlbench 33.7 -0.17%
spec/2006/int/C/401.bzip2 22.9 +0.52%
spec/2006/int/C/403.gcc 32.42 -0.54%
spec/2006/int/C/429.mcf 39.59 +0.19%
spec/2006/int/C/445.gobmk 26.98 -0.00%
spec/2006/int/C/456.hmmer 24.52 -0.18%
spec/2006/int/C/458.sjeng 28.26 +0.02%
spec/2006/int/C/462.libquantum 55.44 +3.74%
spec/2006/int/C/464.h264ref 46.67 -0.39%
geometric mean +0.20%
Manually checked 473 and 471 to verify the diff is in the noise range.
Reviewers: rengolin, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24818
llvm-svn: 284545
Summary:
The original heuristic to break critical edge during machine sink is relatively conservertive: when there is only one instruction sinkable to the critical edge, it is likely that the machine sink pass will not break the critical edge. This leads to many speculative instructions executed at runtime. However, with profile info, we could model the splitting benefits: if the critical edge has 50% taken rate, it would always be beneficial to split the critical edge to avoid the speculated runtime instructions. This patch uses profile to guide critical edge splitting in machine sink pass.
The performance impact on speccpu2006 on Intel sandybridge machines:
spec/2006/fp/C++/444.namd 25.3 +0.26%
spec/2006/fp/C++/447.dealII 45.96 -0.10%
spec/2006/fp/C++/450.soplex 41.97 +1.49%
spec/2006/fp/C++/453.povray 36.83 -0.96%
spec/2006/fp/C/433.milc 23.81 +0.32%
spec/2006/fp/C/470.lbm 41.17 +0.34%
spec/2006/fp/C/482.sphinx3 48.13 +0.69%
spec/2006/int/C++/471.omnetpp 22.45 +3.25%
spec/2006/int/C++/473.astar 21.35 -2.06%
spec/2006/int/C++/483.xalancbmk 36.02 -2.39%
spec/2006/int/C/400.perlbench 33.7 -0.17%
spec/2006/int/C/401.bzip2 22.9 +0.52%
spec/2006/int/C/403.gcc 32.42 -0.54%
spec/2006/int/C/429.mcf 39.59 +0.19%
spec/2006/int/C/445.gobmk 26.98 -0.00%
spec/2006/int/C/456.hmmer 24.52 -0.18%
spec/2006/int/C/458.sjeng 28.26 +0.02%
spec/2006/int/C/462.libquantum 55.44 +3.74%
spec/2006/int/C/464.h264ref 46.67 -0.39%
geometric mean +0.20%
Manually checked 473 and 471 to verify the diff is in the noise range.
Reviewers: rengolin, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24818
llvm-svn: 284541
The custom lowering is pretty straightforward: basically, just AND
together the two halves of a <4 x i32> compare.
Differential Revision: https://reviews.llvm.org/D25713
llvm-svn: 284536
This patch assigns cost of the scaling used in addressing for Cortex-R52.
On Cortex-R52 a negated register offset takes longer than a non-negated
register offset, in a register-offset addressing mode.
Differential Revision: http://reviews.llvm.org/D25670
Reviewer: jmolloy
llvm-svn: 284460
This patch adds simplified support for tail calls on ARM with XRay instrumentation.
Known issue: compiled with generic flags: `-O3 -g -fxray-instrument -Wall
-std=c++14 -ffunction-sections -fdata-sections` (this list doesn't include my
specific flags like --target=armv7-linux-gnueabihf etc.), the following program
#include <cstdio>
#include <cassert>
#include <xray/xray_interface.h>
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fC() {
std::printf("In fC()\n");
}
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fB() {
std::printf("In fB()\n");
fC();
}
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fA() {
std::printf("In fA()\n");
fB();
}
// Avoid infinite recursion in case the logging function is instrumented (so calls logging
// function again).
[[clang::xray_never_instrument]] void simplyPrint(int32_t functionId, XRayEntryType xret)
{
printf("XRay: functionId=%d type=%d.\n", int(functionId), int(xret));
}
int main(int argc, char* argv[]) {
__xray_set_handler(simplyPrint);
printf("Patching...\n");
__xray_patch();
fA();
printf("Unpatching...\n");
__xray_unpatch();
fA();
return 0;
}
gives the following output:
Patching...
XRay: functionId=3 type=0.
In fA()
XRay: functionId=3 type=1.
XRay: functionId=2 type=0.
In fB()
XRay: functionId=2 type=1.
XRay: functionId=1 type=0.
XRay: functionId=1 type=1.
In fC()
Unpatching...
In fA()
In fB()
In fC()
So for function fC() the exit sled seems to be called too much before function
exit: before printing In fC().
Debugging shows that the above happens because printf from fC is also called as
a tail call. So first the exit sled of fC is executed, and only then printf is
jumped into. So it seems we can't do anything about this with the current
approach (i.e. within the simplification described in
https://reviews.llvm.org/D23988 ).
Differential Revision: https://reviews.llvm.org/D25030
llvm-svn: 284456
SelectionDAG::getConstantPool will automatically determine an appropriate alignment if one is not specified. It does this by querying the type's preferred alignment. This can end up creating quite a lot of padding when the preferred alignment for vectors is 128.
In optimize-for-size mode, it makes sense to instead query the ABI type alignment which is often smaller and causes less padding.
llvm-svn: 284381
Retrying after upstream changes.
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and
merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 284151
This patch assigns cost of the scaling used in addressing.
On many ARM cores, a negated register offset takes longer than a
non-negated register offset, in a register-offset addressing mode.
For instance:
LDR R0, [R1, R2 LSL #2]
LDR R0, [R1, -R2 LSL #2]
Above, (1) takes less cycles than (2).
By assigning appropriate scaling factor cost, we enable the LLVM
to make the right trade-offs in the optimization and code-selection phase.
Differential Revision: http://reviews.llvm.org/D24857
Reviewers: jmolloy, rengolin
llvm-svn: 284127
- Use storage class C_STAT for 'PrivateLinkage' The storage class for
PrivateLinkage should equal to the Internal Linkage.
- Set 'PrivateGlobalPrefix' from "L" to ".L" for MM_WinCOFF (includes
x86_64) MM_WinCOFF has empty GlobalPrefix '\0' so PrivateGlobalPrefix
"L" may conflict to the normal symbol name starting with 'L'.
Based on a patch by Han Sangjin! Manually updated test cases.
llvm-svn: 284096
This combiner breaks debug experience and should not be run when optimizations are disabled.
For example:
int main() {
int j = 0;
j += 2;
if (j == 2)
return 0;
return 5;
}
When debugging this code compiled in /O0, it should be valid to break at line "j+=2;" and edit the value of j. It should change the return value of the function.
Differential Revision: https://reviews.llvm.org/D19268
llvm-svn: 284014
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Issue with early tail-duplication of blocks that branch to a fallthrough
predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283934
Currently, the Int_eh_sjlj_dispatchsetup intrinsic is marked as
clobbering all registers, including floating-point registers that may
not be present on the target. This is technically true, as we could get
linked against code that does use the FP registers, but that will not
actually work, as the soft-float code cannot save and restore the FP
registers. SjLj exception handling can only work correctly if either all
or none of the code is built for a target with FP registers. Therefore,
we can assume that, when Int_eh_sjlj_dispatchsetup is compiled for a
soft-float target, it is only going to be linked against other
soft-float code, and so only clobbers the general-purpose registers.
This allows us to check that no non-savable registers are clobbered when
generating the prologue/epilogue.
Differential Revision: https://reviews.llvm.org/D25180
llvm-svn: 283866
This reverts commit r283842.
test/CodeGen/X86/tail-dup-repeat.ll causes and llc crash with our
internal testing. I'll share a link with you.
llvm-svn: 283857
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Issue with early tail-duplication of blocks that branch to a fallthrough
predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283842
The instructions VLDM/VSTM can only access word-aligned memory
locations and produce alignment fault if the condition is not met.
The compiler currently generates VLDM/VSTM for v2f64 load/store
regardless the alignment of the memory access. Instead, if a v2f64
load/store is not word-aligned, the compiler should generate
VLD1/VST1. For each non double-word-aligned VLD1/VST1, a VREV
instruction should be generated when targeting Big Endian.
Differential Revision: https://reviews.llvm.org/D25281
llvm-svn: 283763
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283619
The code used llvm basic block predecessors to decided where to insert phi
nodes. Instruction selection can and will liberally insert new machine basic
block predecessors. There is not a guaranteed one-to-one mapping from pred.
llvm basic blocks and machine basic blocks.
Therefore the current approach does not work as it assumes we can mark
predecessor machine basic block as needing a copy, and needs to know the set of
all predecessor machine basic blocks to decide when to insert phis.
Instead of computing the swifterror vregs as we select instructions, propagate
them at the end of instruction selection when the MBB CFG is complete.
When an instruction needs a swifterror vreg and we don't know the value yet,
generate a new vreg and remember this "upward exposed" use, and reconcile this
at the end of instruction selection.
This will only happen if the target supports promoting swifterror parameters to
registers and the swifterror attribute is used.
rdar://28300923
llvm-svn: 283617
Reapplying r283383 after revert in r283442. The additional fix
is a getting rid of a stray space in a function name, in the
refactoring part of the commit.
This avoids falling back to calling out to the GCC rem functions
(__moddi3, __umoddi3) when targeting Windows.
The __rt_div functions have flipped the two arguments compared
to the __aeabi_divmod functions. To match MSVC, we emit a
check for division by zero before actually calling the library
function (even if the library function itself also might do
the same check).
Not all calls to __rt_div functions for division are currently
merged with calls to the same function with the same parameters
for the remainder. This is more wasteful than a div + mls as before,
but avoids calls to __moddi3.
Differential Revision: https://reviews.llvm.org/D25332
llvm-svn: 283550
This reverts commit r283383 because it broke some of the bots:
undefined reference to ` __aeabi_uldivmod'
It affected (at least) clang-cmake-armv7-a15-selfhost,
clang-cmake-armv7-a15-selfhost and clang-native-arm-lnt.
llvm-svn: 283442
Global variables are GlobalValues, so they have explicit alignment. Querying
DataLayout for the alignment was incorrect.
Testcase added.
llvm-svn: 283423
We can work around a shortcoming of FileCheck by using {{\[}} to match a square
bracket before a [[ sequence.
Thanks to Eli Friedman for the heads up!
llvm-svn: 283422
This avoids falling back to calling out to the GCC rem functions
(__moddi3, __umoddi3) when targeting Windows.
The __rt_div functions have flipped the two arguments compared
to the __aeabi_divmod functions. To match MSVC, we emit a
check for division by zero before actually calling the library
function (even if the library function itself also might do
the same check).
Not all calls to __rt_div functions for division are currently
merged with calls to the same function with the same parameters
for the remainder. This is more wasteful than a div + mls as before,
but avoids calls to __moddi3.
Differential Revision: https://reviews.llvm.org/D24076
llvm-svn: 283383
This is not a valid encoding - these instructions cannot do PC-relative addressing.
The underlying problem here is of whitelist in ARMISelDAGToDAG that unwraps ARMISD::Wrappers during addressing-mode selection. This didn't realise TargetConstantPool was actually possible, so didn't handle it.
llvm-svn: 283323
This reverts commit 062ace9764953e9769142c1099281a345f9b6bdc.
Issue with loop info and block removal revealed by polly.
I have a fix for this issue already in another patch, I'll re-roll this
together with that fix, and a test case.
llvm-svn: 283292
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well.
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283274
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
llvm-svn: 283164
library call to __aeabi_uidivmod. This is an improved implementation of
r280808, see also D24133, that got reverted because isel was stuck in a loop.
That was caused by the optimisation incorrectly triggering on i64 ints, which
shouldn't happen because there is no 64bit hwdiv support; that put isel's type
legalization and this optimisation in a loop. A native ARM compiler and testing
now shows that this is fixed.
Patch mostly by Pablo Barrio.
Differential Revision: https://reviews.llvm.org/D25077
llvm-svn: 283098
This addresses PR26055 LiveDebugValues is very slow.
Contrary to the old LiveDebugVariables pass LiveDebugValues currently
doesn't look at the lexical scopes before inserting a DBG_VALUE
intrinsic. This means that we often propagate DBG_VALUEs much further
down than necessary. This is especially noticeable in large C++
functions with many inlined method calls that all use the same
"this"-pointer.
For example, in the following code it makes no sense to propagate the
inlined variable a from the first inlined call to f() into any of the
subsequent basic blocks, because the variable will always be out of
scope:
void sink(int a);
void __attribute((always_inline)) f(int a) { sink(a); }
void foo(int i) {
f(i);
if (i)
f(i);
f(i);
}
This patch reuses the LexicalScopes infrastructure we have for
LiveDebugVariables to take this into account.
The effect on compile time and memory consumption is quite noticeable:
I tested a benchmark that is a large C++ source with an enormous
amount of inlined "this"-pointers that would previously eat >24GiB
(most of them for DBG_VALUE intrinsics) and whose compile time was
dominated by LiveDebugValues. With this patch applied the memory
consumption is 1GiB and 1.7% of the time is spent in LiveDebugValues.
https://reviews.llvm.org/D24994
Thanks to Daniel Berlin and Keith Walker for reviewing!
llvm-svn: 282611
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill
behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, nhaehnle, jyknight
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 282600
Variables are sometimes missing their debug location information in
blocks in which the variables should be available. This would occur
when one or more predecessor blocks had not yet been visited by the
routine which propagated the information from predecessor blocks.
This is addressed by only considering predecessor blocks which have
already been visited.
The solution to this problem was suggested by Daniel Berlin on the
LLVM developer mailing list.
Differential Revision: https://reviews.llvm.org/D24927
llvm-svn: 282506
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 282387
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 282241
ldm and stm instructions always require 4-byte alignment on the pointer, but we
weren't checking this before trying to reduce code-size by replacing a
post-indexed load/store with them. Unfortunately, we were also dropping this
incormation in DAG ISel too, but that's easy enough to fix.
llvm-svn: 281893
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
https://reviews.llvm.org/D23932 (Clang test)
https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 281878
(and the same for SREM)
This was causing buildbot failures earlier (time outs in the LNT suite).
However, we haven't been able to reproduce this and are suspecting this
was caused by another (reverted) patch.
llvm-svn: 281719
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 281715
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
llvm-svn: 281604
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281484
Before, only Thumb functions were marked as ".code 16". These
".code x" directives are effective until the next directive of its
kind is encountered. Therefore, in code with interleaved ARM and
Thumb functions, it was possible to declare a function as ARM and
end up with a Thumb function after assembly. A test has been added.
An existing test has also been fixed to take this change into
account.
Reviewers: aschwaighofer, t.p.northover, jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D24337
llvm-svn: 281324
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281323
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281314
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281215
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281213
Summary:
This test was not testing the intrinsics. A function like this:
define %v4f32 @test_v4f32.floor(%v4f32 %a){
...
%1 = call %v4f32 @llvm.floor.v4f32(%v4f32 %a)
...
}
is transformed into the following assembly:
_test_v4f32.floor: @ @test_v4f32.floor
...
bl _floorf
...
In each function tested, there are two CHECK: one that checked
for the label and another one for the intrinsic that should be used
inside the function (in our case, "floor"). However, although the
first CHECK was matching the label, the second was not matching the
intrinsic, but the second "floor" in the same line as the label.
This is fixed by making the first CHECK match the entire line.
Reviewers: jmolloy, rengolin
Subscribers: rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D24398
llvm-svn: 281211
The CMPZ #0 disappears during peepholing, leaving just a tADDi3, tADDi8 or t2ADDri. This avoids having to materialize the expensive negative constant in Thumb-1, and allows a shrinking from a 32-bit CMN to a 16-bit ADDS in Thumb-2.
llvm-svn: 281040
And associated commits, as they broke the Thumb bots.
This reverts commit r280935.
This reverts commit r280891.
This reverts commit r280888.
llvm-svn: 280967
Materializing something like "-3" can be done as 2 instructions:
MOV r0, #3
MVN r0, r0
This has a cost of 2, not 3. It looks like we were already trying to detect this pattern in TII::getIntImmCost(), but were taking the complement of the zero-extended value instead of the sign-extended value which is unlikely to ever produce a number < 256.
There were no tests failing after changing this... :/
llvm-svn: 280928
This reverts commit r280808.
It is possible that this change results in an infinite loop. This
is causing timeouts in some tests on ARM, and a Chromebook bot is
failing.
llvm-svn: 280918
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
1. https://reviews.llvm.org/D23932 (Clang test)
2. https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 280888
Summary:
This saves a library call to __aeabi_uidivmod. However, the
processor must feature hardware division in order to benefit from
the transformation.
Reviewers: scott-0, jmolloy, compnerd, rengolin
Subscribers: t.p.northover, compnerd, aemerson, rengolin, samparker, llvm-commits
Differential Revision: https://reviews.llvm.org/D24133
llvm-svn: 280808
This is a Windows ARM specific issue. If the code path in the if conversion
ends up using a relocation which will form a IMAGE_REL_ARM_MOV32T, we end up
with a bundle to ensure that the mov.w/mov.t pair is not split up. This is
normally fine, however, if the branch is also predicated, then we end up trying
to predicate the bundle.
For now, report a bundle as being unpredicatable. Although this is false, this
would trigger a failure case previously anyways, so this is no worse. That is,
there should not be any code which would previously have been if converted and
predicated which would not be now.
Under certain circumstances, it may be possible to "predicate the bundle". This
would require scanning all bundle instructions, and ensure that the bundle
contains only predicatable instructions, and converting the bundle into an IT
block sequence. If the bundle is larger than the maximal IT block length (4
instructions), it would require materializing multiple IT blocks from the single
bundle.
llvm-svn: 280689
All of the builtins are designed to be invoked with ARM AAPCS CC even on ARM
AAPCS VFP CC hosts. Tweak the default initialisation to ARM AAPCS CC rather
than C CC for ARM/thumb targets.
The changes to the tests are necessary to ensure that the calling convention for
the lowered library calls are honoured. Furthermore, these adjustments cause
certain branch invocations to change to branch-and-link since the returned value
needs to be moved across registers (d0 -> r0, r1).
llvm-svn: 280683
types. This is the LLVM counterpart and it adds options that map onto FP
exceptions and denormal build attributes allowing better fp math library
selections.
Differential Revision: https://reviews.llvm.org/D24070
llvm-svn: 280246
Summary:
In fuctions that contained debug info but were empty otherwise,
the ARM load/store optimizer could abort. This was because
function MergeReturnIntoLDM handled the special case where a
Machine Basic BLock is empty by calling MBB.empty(). However, this
returns false in presence of debug info, although the function
should be considered empty in the eyes of the load/store optimizer.
This has been fixed by handling the case where searching through the
block finds only debug instructions.
Reviewers: rengolin, dexonsmith, llvm-commits, jmolloy
Subscribers: t.p.northover, aemerson, rengolin, samparker
Differential Revision: https://reviews.llvm.org/D23847
llvm-svn: 279820
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
tracksSubRegLiveness only depends on the Subtarget and a cl::opt, there
is not need to change it or save/parse it in a .mir file.
Make the field const and move the initialization LiveIntervalAnalysis to the
MachineRegisterInfo constructor. Also cleanup some code and fix some
instances which better use MachineRegisterInfo::subRegLivenessEnabled() instead
of TargetSubtargetInfo::enableSubRegLiveness().
llvm-svn: 279676
The cost of predicating a diamond is only the instructions that are not shared
between the two branches. Additionally If a predicate clobbering instruction
occurs in the shared portion of the branches (e.g. a cond move), it may still
be possible to if convert the sub-cfg. This change handles these two facts by
rescanning the non-shared portion of a diamond sub-cfg to recalculate both the
predication cost and whether both blocks are pred-clobbering.
Fixed 2 bugs before recommitting. Branch instructions must be compared and found
identical before diamond conversion. Also, predicate-clobbering instructions in
the shared prefix disqualifies a potential diamond conversion. Includes tests
for both.
llvm-svn: 279670
Specifying isSSA is an extra line at best and results in invalid MI at
worst. Compute the value instead.
Differential Revision: http://reviews.llvm.org/D22722
llvm-svn: 279600
There is not an official documented ABI for frame pointers in Thumb2,
but we should try to emit something which is useful.
We use r7 as the frame pointer for Thumb code, which currently means
that if a function needs to save a high register (r8-r11), it will get
pushed to the stack between the frame pointer (r7) and link register
(r14). This means that while a stack unwinder can follow the chain of
frame pointers up the stack, it cannot know the offset to lr, so does
not know which functions correspond to the stack frames.
To fix this, we need to push the callee-saved registers in two batches,
with the first push saving the low registers, fp and lr, and the second
push saving the high registers. This is already implemented, but
previously only used for iOS. This patch turns it on for all Thumb2
targets when frame pointers are required by the ABI, and the frame
pointer is r7 (Windows uses r11, so this isn't a problem there). If
frame pointer elimination is enabled we still emit a single push/pop
even if we need a frame pointer for other reasons, to avoid increasing
code size.
We must also ensure that lr is pushed to the stack when using a frame
pointer, so that we end up with a complete frame record. Situations that
could cause this were rare, because we already push lr in most
situations so that we can return using the pop instruction.
Differential Revision: https://reviews.llvm.org/D23516
llvm-svn: 279506
[Recommitting now an unrelated assertion in SROA is sorted out]
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
Round 4. This time we should handle all instructions correctly, and not replace any operands that need to be constant with variables.
This was really hard to determine safely, so the helper function should be put into the Instruction API. I'll do that as a followup.
llvm-svn: 279460
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
Round 4. This time we should handle all instructions correctly, and not replace any operands that need to be constant with variables.
This was really hard to determine safely, so the helper function should be put into the Instruction API. I'll do that as a followup.
llvm-svn: 279443
This fixes the crash from PR29072, where the MachineBasicBlock::iterator
wasn't being properly checked against MachineBasicBlock::end() before
iterating. This was another bug exposed by the new
ilist::iterator::operator*() assertion from r279314.
This testcase is poor quality. bugpoint couldn't reduce any further,
and I haven't had time to dig into what's going on so I can't invent a
better one. I didn't even get good CHECK lines in: this is just a
crasher.
I'm committing anyway since this is a real crash with an obvious fix,
but I'll leave PR29072 open and ask an ARM maintainer to help improve
the testcase.
llvm-svn: 279391
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
llvm-svn: 279229
This reverts commit r278660.
It causes downstream assertion failure in InstCombine on shuffle
instructions. Comes up in __mm_swizzle_epi32.
llvm-svn: 278672
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
llvm-svn: 278660
If a loop is not rotated (for example when optimizing for size), the latch is not the backedge. If we promote an expression to post-inc form, we not only increase register pressure and add a COPY for that IV expression but for all IVs!
Motivating testcase:
void f(float *a, float *b, float *c, int n) {
while (n-- > 0)
*c++ = *a++ + *b++;
}
It's imperative that the pointer increments be located in the latch block and not the header block; if not, we cannot use post-increment loads and stores and we have to keep both the post-inc and pre-inc values around until the end of the latch which bloats register usage.
llvm-svn: 278658
"insert_subreg, subreg_to_reg, and reg_sequence" instructions' after
adjusting some unittest checks.
This is to solve PR28852. The restriction was added at 2010 to make better register
coalescing. We assumed that it was not necessary any more. Testing results on x86
supported the assumption.
We will look closely to any performance impact it will bring and will be prepared
to help analyzing performance problem found on other architectures.
Differential Revision: https://reviews.llvm.org/D23210
llvm-svn: 278466
To fix PR28014, this patch restricts tail merging to blocks that belong to the
same loop after MBP.
Differential Revision: https://reviews.llvm.org/D23191
llvm-svn: 278463
This change makes it possible for tail-duplication and tail-merging to
be disjoint. By being less aggressive when merging during layout, there are no
overlapping cases between tail-duplication and tail-merging, provided the
thresholds are disjoint.
There is a remaining TODO to benchmark the succ_size() test for non-layout tail
merging.
llvm-svn: 278265
Created a Thumb2 predicated pattern matcher that uses Thumb2 and
HasT2ExtractPack and used it to redefine the patterns for sxta{b|h}
and uxta{b|h}. Also used the similar patterns to fill in isel pattern
gaps for the corresponding instructions in the ARM backend.
The patch is mainly changes to tests since most of this functionality
appears not to have been tested.
Differential Revision: https://reviews.llvm.org/D23273
llvm-svn: 278207
This patch adds support for some new relocation models to the ARM
backend:
* Read-only position independence (ROPI): Code and read-only data is accessed
PC-relative. The offsets between all code and RO data sections are known at
static link time. This does not affect read-write data.
* Read-write position independence (RWPI): Read-write data is accessed relative
to the static base register (r9). The offsets between all writeable data
sections are known at static link time. This does not affect read-only data.
These two modes are independent (they specify how different objects
should be addressed), so they can be used individually or together. They
are otherwise the same as the "static" relocation model, and are not
compatible with SysV-style PIC using a global offset table.
These modes are normally used by bare-metal systems or systems with
small real-time operating systems. They are designed to avoid the need
for a dynamic linker, the only initialisation required is setting r9 to
an appropriate value for RWPI code.
I have only added support to SelectionDAG, not FastISel, because
FastISel is currently disabled for bare-metal targets where these modes
would be used.
Differential Revision: https://reviews.llvm.org/D23195
llvm-svn: 278015
Summary: Thumb2 supports encoding immediates with specific patterns into mov.w by splatting the low 8 bits into other bytes.
I'm resubmitting this patch. The test case in the original commit
r277610 does not specify triple, so builds with differnt default triple
will have different output.
This patch fixed trile as thumb-darwin-apple.
Reviewers: john.brawn, jmolloy, bruno
Subscribers: jmolloy, aemerson, rengolin, samparker, llvm-commits
Differential Revision: https://reviews.llvm.org/D23090
llvm-svn: 277865
Summary: Thumb2 supports encoding immediates with specific patterns into mov.w by splatting the low 8 bits into other bytes.
Reviewers: john.brawn, jmolloy
Subscribers: jmolloy, aemerson, rengolin, samparker, llvm-commits
Differential Revision: https://reviews.llvm.org/D23090
llvm-svn: 277610
In this particular example we wouldn't want the smmls anyway (the value is
actually unused), but in general smmls does not provide the required flags
register so if that SUBE result is used we can't replace it.
llvm-svn: 277541
Added (sra (shl x, 16), 16) to the sext_16_node PatLeaf for ARM to
simplify some pattern matching. This has allowed several patterns
for smul* and smla* to be removed as well as making it easier to add
the matching for the corresponding instructions for Thumb2 targets.
Also added two Pat classes that are predicated on Thumb2 with the
hasDSP flag and UseMulOps flags. Updated the smul codegen test with
the wider range of patterns plus the ThumbV6 and ThumbV6T2 targets.
Differential Revision: https://reviews.llvm.org/D22908
llvm-svn: 277450
Summary:
When performing cmp for EQ/NE and the operand is sign extended, we can
avoid the truncaton if the bits to be tested are no less than origianl
bits.
Reviewers: eli.friedman
Subscribers: eli.friedman, aemerson, nemanjai, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D22933
llvm-svn: 277252
Summary:
The MOV/MOVT instructions being chosen for struct_byval predicates was
conditional only on Thumb2, resulting in an ARM MOV/MOVT instruction
being incorrectly emitted in Thumb1 mode. This is especially apparent
with v8-m.base targets. This patch ensures that Thumb instructions are
emitted in both Thumb modes.
Reviewers: rengolin, t.p.northover
Subscribers: llvm-commits, aemerson, rengolin
Differential Revision: https://reviews.llvm.org/D22865
llvm-svn: 277128
In an instruction like:
CFI_INSTRUCTION .cfi_def_cfa ...
we can drop the '.cfi_' prefix since that should be obvious by the
context:
CFI_INSTRUCTION def_cfa ...
While being a terser and cleaner syntax this also prepares to dropping
support for identifiers starting with a dot character so we can use it
for expressions.
Differential Revision: http://reviews.llvm.org/D22388
llvm-svn: 276785
The saturation instructions appeared in v6T2, with DSP extensions, but they
were being accepted / generated on any, with the new introduction of the
saturation detection in the back-end. This commit restricts the usage to
DSP-enable only cores.
Fixes PR28607.
llvm-svn: 276701
Retry r275776 (no changes, we suspect the issue was with another commit).
The current logic for handling inline asm operands in DAGToDAGISel interprets
the operands by looking for constants, which should represent the flags
describing the kind of operand we're dealing with (immediate, memory, register
def etc). The operands representing actual data are skipped only if they are
non-const, with the exception of immediate operands which are skipped explicitly
when a flag describing an immediate is found.
The oversight is that memory operands may be const too (e.g. for device drivers
reading a fixed address), so we should explicitly skip the operand following a
flag describing a memory operand. If we don't, we risk interpreting that
constant as a flag, which is definitely not intended.
Fixes PR26038
Differential Revision: https://reviews.llvm.org/D22103
llvm-svn: 276101
Inference of the 'returned' attribute was fixed in r276008, lets try
turning the backend support back on.
This reverts commit r275677.
llvm-svn: 276081
Recommitting after r274347 was reverted. This patch introduces some
classes to refactor the 3 and 4 register Thumb2 multiplication
instruction descriptions, plus improved tests for some of those
instructions.
Differential Revision: https://reviews.llvm.org/D21929
llvm-svn: 275979
Elsewhere (particularly computeKnownBits) we assume that a global will be
aligned to the value returned by Value::getPointerAlignment. This is used to
boost the alignment on memcpy/memset, so any target-specific request can only
increase that value.
llvm-svn: 275866
The current logic for handling inline asm operands in DAGToDAGISel interprets
the operands by looking for constants, which should represent the flags
describing the kind of operand we're dealing with (immediate, memory, register
def etc). The operands representing actual data are skipped only if they are
non-const, with the exception of immediate operands which are skipped explicitly
when a flag describing an immediate is found.
The oversight is that memory operands may be const too (e.g. for device drivers
reading a fixed address), so we should explicitly skip the operand following a
flag describing a memory operand. If we don't, we risk interpreting that
constant as a flag, which is definitely not intended.
Fixes PR26038
Differential Revision: https://reviews.llvm.org/D22103
llvm-svn: 275776
At higher optimization levels, we generate the libcall for DIVREM_Ix, which is
fine: aeabi_{u|i}divmod. At -O0 we generate the one for REM_Ix, which is the
default {u}mod{q|h|s|d}i3.
This commit makes sure that we don't generate REM_Ix calls for ABIs that
don't support them (i.e. where we need to use DIVREM_Ix instead). This is
achieved by bailing out of FastISel, which can't handle non-double multi-reg
returns, and letting the legalization infrastructure expand the REM_Ix calls.
It also updates the divmod-eabi.ll test to run under -O0 as well, and adds some
Windows checks to it to make sure we don't break things for it.
Fixes PR27068
Differential Revision: https://reviews.llvm.org/D21926
llvm-svn: 275773
r275042 reverted function-attribute inference for the 'returned' attribute
because the feature triggered self-hosting failures on ARM and AArch64. James
Molloy determined that the this-return argument forwarding feature, which
directly ties the returned input argument to the returned value, was the cause.
It seems likely that this forwarding code contains, or triggers, a subtle bug.
Disabling for now until we can track that down.
llvm-svn: 275677
test/CodeGen/MIR/ARM/ARMLoadStoreDBG.mir is an actual test for the ARM
load store optimization pass and not a test of the mir parser/printer.
It belongs to test/CodeGen/ARM; This also updates the test to use the
new -run-pass llc syntax.
llvm-svn: 275662
Previously, we would expand:
%BL<def> = COPY %DL<kill>, %EBX<imp-use,kill>, %EBX<imp-def>
Into:
%BL<def> = MOV8rr %DL<kill>, %EBX<imp-def>
Dropping the imp-use on the floor.
That confused CriticalAntiDepBreaker, which (correctly) assumes that if an
instruction defs but doesn't use a register, that register is dead immediately
before the instruction - while in this case, the high lanes of EBX can be very
much alive.
This fixes PR28560.
Differential Revision: https://reviews.llvm.org/D22425
llvm-svn: 275634
Remove unnecessary clutter in assembly output. When using SjLj EH, the CFI is
not actually used for anything. Do not emit the CFI needlessly. The minor test
adjustments are interesting. The prologue test was just overzealous matcching.
The interesting case is the LSDA change. It was originally added to ensure that
various compilations did not mangle the name (it explicitly checked the name!).
However, subsequent cleanups made it more reliant on the CFI to find the name.
Parse the generated code flow to generically find the label still.
llvm-svn: 275614
... When we emit several calls to the same function in the same basic block.
An indirect call uses a "BLX r0" instruction which has a 16-bit encoding. If many calls are made to the same target, this can enable significant code size reductions.
llvm-svn: 275537
Currently the MIR framework prints all its outputs (errors and actual
representation) on stderr.
This patch fixes that by printing the regular output in the output
specified with -o.
Differential Revision: http://reviews.llvm.org/D22251
llvm-svn: 275314
As a result, the urem instruction will not be expanded to a sequence of umull,
lsrs, muls and sub instructions, but just a call to __aeabi_uidivmod.
Differential Revision: http://reviews.llvm.org/D22131
llvm-svn: 274843
Windows on ARM uses a pure thumb-2 environment. This means that it can select a
high register when doing a __builtin_longjmp. We would use a tLDRi which would
truncate the register to a low register. Use a t2LDRi12 to get the full
register file access. Tweak the code to just load into PC, as that is an
interworking branch on all supported cores anyways.
llvm-svn: 274815
This is a follow-up for r273544.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
This commit also removes two command-line flags that weren't used in any of the
tests: widen-vmovs and swift-partial-update-clearance. The former may be easily
replaced with the mattr mechanism, but the latter may not (as it is a subtarget
property, and not a proper feature).
Differential Revision: http://reviews.llvm.org/D21797
llvm-svn: 274620
Not all code-paths set the relocation model to static for Windows. This
currently breaks on Windows ARM with `-mlong-calls` when built with clang.
Loosen the assertion to what it was previously. We would ideally ensure that
all the configuration sets Windows to static relocation model.
llvm-svn: 274570
Summary:
SSAT saturates an integer, making sure that its value lies within
an interval [-k, k]. Since the constant is given to SSAT as the
number of bytes set to one, k + 1 must be a power of 2, otherwise
the optimization is not possible. Also, the select_cc must use <
and > respectively so that they define an interval.
Reviewers: mcrosier, jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D21372
llvm-svn: 273581
Summary:
canCombineSinCosLibcall() would previously combine sin+cos into sincos for
GNUX32/GNUEABI/GNUEABIHF regardless of whether UnsafeFPMath were set or not.
However, GNU would only combine them for UnsafeFPMath because sincos does not
set errno like sin and cos do. It seems likely that this is an oversight.
Reviewers: t.p.northover
Subscribers: t.p.northover, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D21431
llvm-svn: 273259
TargetLowering and DAGToDAG are used to combine ADDC, ADDE and UMLAL
dags into UMAAL. Selection is split into the two phases because it
is easier to match the two patterns at those different times.
Differential Revision: http://http://reviews.llvm.org/D21461
llvm-svn: 273165
Reapplying patch as it was reverted when it was first
committed because of an assertion failure when the
mrrc2 intrinsic was called in ARM mode. The failure
was happening because the instruction was being built
in ARMISelDAGToDAG.cpp and the tablegen description for
mrrc2 instruction doesn't allow you to use a predicate.
The ARM architecture manuals do say that mrrc2 in ARM
mode can be predicated with AL in assembly but this has
no effect on the encoding of the instruction as the top
4 bits will always be 1111 not 1110 which is the encoding
for the condition AL.
Differential Revision: http://reviews.llvm.org/D21408
llvm-svn: 272982
The R_ARM_PLT32 relocation is deprecated and is not produced by MC.
This means that the code being deleted is dead from the .o point of
view and was making the .s more confusing.
llvm-svn: 272909