Several groups of operations in different dialects (e.g. AffineForOp,
AffineIfOp; loop::ForOp, loop::IfOp) share the requirement for their regions to
contain 0 or 1 block, and for blocks to always have a specific terminator type.
Furthermore, this terminator may be omitted from the custom syntax. Generalize
this behavior into OpTrait::SingleBlockImplicitTerminator, parameterized by the
terminator operation type. This trait provides the verifier that checks the
presence of the terminator, and utility functions adding the terminator in case
of absence.
PiperOrigin-RevId: 258957180
We already parse boolean "true"/"false" as ElementsAttr elements.
This CL makes it round-trippable that we are printing the same way.
PiperOrigin-RevId: 258784962
This cl standardizes the printing of the type of dialect attributes to work the same as other attribute kinds. The type of dialect attributes will trail the dialect specific portion:
`#` dialect-namespace `<` attr-data `>` `:` type
The attribute parsing hooks on Dialect have been updated to take an optionally null expected type for the attribute. This matches the respective parseAttribute hooks in the OpAsmParser.
PiperOrigin-RevId: 258661298
These ops should not belong to the std dialect.
This CL extracts them in their own dialect and updates the corresponding conversions and tests.
PiperOrigin-RevId: 258123853
This changes the top-level module parser to handle the case where the top-level module is defined with the module operation syntax, i.e:
module ... {
}
The printer is also updated to always print the top-level module in this form. This allows for cleanly round-tripping the location and attributes of the top-level module.
PiperOrigin-RevId: 257492069
This was an arbitrary restriction caused by the way that modules were printed. Now that that has been fixed, this restriction can be removed.
PiperOrigin-RevId: 257240329
Change the AsmPrinter to number values breadth-first so that values in adjacent regions can have the same name. This allows for ModuleOp to contain operations that produce results. This also standardizes the special name of region entry arguments to "arg[0-9+]" now that Functions are also operations.
PiperOrigin-RevId: 257225069
This CL adds an "std.if" op to represent an if-then-else construct whose condition is an arbitrary value of type i1.
This is necessary to lower all the existing examples from affine and linalg to std.for + std.if.
This CL introduces the op and adds the relevant positive and negative unit test. Lowering will be done in a separate followup CL.
PiperOrigin-RevId: 256649138
This is an important step in allowing for the top-level of the IR to be extensible. FuncOp and ModuleOp contain all of the necessary functionality, while using the existing operation infrastructure. As an interim step, many of the usages of Function and Module, including the name, will remain the same. In the future, many of these will be relaxed to allow for many different types of top-level operations to co-exist.
PiperOrigin-RevId: 256427100
This CL is the first step of a refactoring unification of the control flow abstraction used in different dialects. The `std.for` loop accepts unrestricted indices to encode min, max and step and will be used as a common abstraction on the way to lower level dialects.
PiperOrigin-RevId: 256331795
In ODS, right now we use StringAttrs to emulate enum attributes. It is
suboptimal if the op actually can and wants to store the enum as a
single integer value; we are paying extra cost on storing and comparing
the attribute value.
This CL introduces a new enum attribute subclass that are backed by
IntegerAttr. The downside with IntegerAttr-backed enum attributes is
that the assembly form now uses integer values, which is less obvious
than the StringAttr-backed ones. However, that can be remedied by
defining custom assembly form with the help of the conversion utility
functions generated via EnumsGen.
Choices are given to the dialect writers to decide which one to use for
their enum attributes.
PiperOrigin-RevId: 255935542
This functionality is now moved to a new class, ModuleManager. This class allows for inserting functions into a module, and will auto-rename them on insert to ensure a unique name. This now means that users adding new functions to a module must ensure that the function name is unique, as the Module will no longer do it automatically. This also means that Module::getNamedFunction now operates in O(N) instead of the O(c) time it did before. This simplifies the move of Modules to Operations as the ModuleOp will not be able to have this functionality.
PiperOrigin-RevId: 255846088
The current syntax separates the name and value with ':', but ':' is already overloaded by several other things(e.g. trailing types). This makes the syntax difficult to parse in some situtations:
Old:
"foo: 10 : i32"
New:
"foo = 10 : i32"
PiperOrigin-RevId: 255097928
This is the standard syntax for types on operations, and is also already used by IntegerAttr and FloatAttr.
Example:
dense<5> : tensor<i32>
dense<[3]> : tensor<1xi32>
PiperOrigin-RevId: 255069157
The error would look like:
path/filename.mlir:32:23: error: use of value '%28' expects different type than prior uses: ''i32'' vs ''!_tf.control''
PiperOrigin-RevId: 254874859
The ModuleOp contains a single region that must contain a single block. This block must be terminated by a new pseudo operation 'module_terminator'. The syntax for this operations is as follows:
`module` (`attributes` attr-dict)? region
Example:
module {
...
}
module attributes { ... } {
...
}
PiperOrigin-RevId: 254513752
This will allow for locations to be used in the same contexts as attributes. Given that attributes are nullable types, the 'Location' class now represents a non-nullable wrapper around a 'LocationAttr'. This preserves the desired semantics we have for non-optional locations.
PiperOrigin-RevId: 254505278
This name has caused some confusion because it suggests that it's running op verification (and that this verification isn't getting run by default).
PiperOrigin-RevId: 254035268
Index types integers of platform-specific bit width. They are used to index
memrefs and as loop induction variables, however they could not be obtained
from an integer until now, making it virtually impossible to express indirect
accesses (given that memrefs of indices are not allowed) or data-dependent
loops. Introduce `std.index_cast` to transform indices into integers and vice
versa. The semantics of this cast is to sign-extend when casting to a wider
integer, and to truncate when casting to a narrower integer. It belongs to
StandardOps because both types it operates on are standard types, and because
its results are likely to be used in std.load and std.store.
Introduce llvm.sext, llvm.zext and llvm.trunc operations to the LLVM dialect.
Provide the conversion of `std.index_cast` to llvm.sext or llvm.trunc,
depending on the actual bitwidth of `index` known during the conversion.
PiperOrigin-RevId: 253624100
This CL enables verification code generation for variadic operands and results.
In verify(), we use fallback getter methods to access all the dynamic values
belonging to one static variadic operand/result to reuse the value range
calculation there.
PiperOrigin-RevId: 252288219
Similar to arguments and results, now we require region definition in ops to
be specified as a DAG expression with the 'region' operator. This way we can
specify the constraints for each region and optionally give the region a name.
Two kinds of region constraints are added, one allowing any region, and the
other requires a certain number of blocks.
--
PiperOrigin-RevId: 250790211
This is in preparation for making MemRef a ShapedType. In general, a shaped type should be anything with shape, rank, and element type properties, so use sites shouldn't assume more than that.
I also pulled the trailing comma parsing out the parseElementsLiteralType (new name) method. It seems weird to have the method parse the type + a trailing comma, even if all call sites currently need that. It's surprising behavior without looking at the implementation.
--
PiperOrigin-RevId: 250558363
* There is no longer a need to explicitly remap function attrs.
- This removes a potentially expensive call from the destructor of Function.
- This will enable some interprocedural transformations to now run intraprocedurally.
- This wasn't scalable and forces dialect defined attributes to override
a virtual function.
* Replacing a function is now a trivial operation.
* This is a necessary first step to representing functions as operations.
--
PiperOrigin-RevId: 249510802
We now have sufficient extensibility in dialects to move attribute components
such as SDBM out of the core IR into a dedicated dialect and make them
optional. Introduce an SDBM dialect and move the code. This is a mostly
non-functional change.
--
PiperOrigin-RevId: 249244802
SDBM has an output format representing the unterlying matrix and stripe
expressions. Move the SDBM tests from unit testing framework to
FileCheck-based tests, printing them to the standard output and using FileCheck
to test the output. Tests that check the API proper (e.g. that SDBM
expressions have a specific subtype) and that rely on non-syntatic properties
(equality of the set of constraints) are not ported.
--
PiperOrigin-RevId: 249006055
Make it clear that it cares about the aggregate type being a vector or tensor and not just that it has a shape.
Remove redundant validation from the custom method that is now covered by the tablegen'ed verification
This is related to making MemRefs a ShapedType as well.
--
PiperOrigin-RevId: 248610443
This is in preparation for making it also support/be a parent class of MemRefType. MemRefs have similar shape/rank/element semantics and it would be useful to be able to use these same utilities for them.
This CL should not change any semantics and only change variables, types, string literals, and comments. In follow-up CLs I will prepare all callers to handle MemRef types or remove their dependence on ShapedType.
Discussion/Rationale in https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/cHLoyfGu8y8
--
PiperOrigin-RevId: 248476449
This closely mirrors the llvm fcmp instruction, defining 16 different predicates
Constant folding is unsupported for NaN and Inf because there's no way to represent those as constants at the moment
--
PiperOrigin-RevId: 246932358
`#` alias `=` attribute-value
This also allows for dialects to define aliases for attributes in the AsmPrinter. The printer supports two types of attribute aliases, 'direct' and 'kind'.
* Direct aliases are synonymous with the current support for type aliases, i.e. this maps an alias to a specific instance of an attribute.
// A direct alias ("foo_str") for the string attribute "foo".
#foo_str = "foo"
* Kind aliases generates unique names for all instances of a given attribute kind. The generated aliases are of the form: `alias[0-9]+`.
// A kind alias ("strattr") for all string attributes could generate.
#strattr0 = "foo"
#strattr1 = "bar"
...
#strattrN = "baz"
--
PiperOrigin-RevId: 246851916
The generic form of operations currently supports optional regions to be
located after the operation type. As we are going to add a type to each
region in a leading position in the region syntax, similarly to functions, it
becomes ambiguous to have regions immediately after the operation type. Put
regions between operands the optional list of successors in the generic
operation syntax and wrap them in parentheses. The effect on the exisitng IR
syntax is minimal since only three operations (`affine.for`, `affine.if` and
`gpu.kernel`) currently use regions.
--
PiperOrigin-RevId: 246787087
none-type ::= `none`
The `none` type is a unit type, i.e. a type with exactly one possible value, where its value does not have a defined dynamic representation.
--
PiperOrigin-RevId: 245599248
A unit attribute is an attribute that represents a value of `unit` type. The
`unit` type allows only one value forming a singleton set. This attribute value
is used to represent attributes that only have meaning from their existence.
One example of such an attribute could be the `swift.self` attribute. This attribute indicates that a function parameter is the self/context
parameter. It could be represented as a boolean attribute(true or false), but a
value of false doesn't really bring any value. The parameter either is the
self/context or it isn't.
```mlir {.mlir}
// A unit attribute defined with the `unit` value specifier.
func @verbose_form(i1 {unitAttr : unit})
// A unit attribute can also be defined without the `unit` value specifier.
func @simple_form(i1 {unitAttr})
```
--
PiperOrigin-RevId: 245254045
other characters within the <>'s now that we can. This will allow quantized
types to use the pretty syntax (among others) after a few changes.
--
PiperOrigin-RevId: 243521268
There are no empty lines in output for three of these directives so removed
them and replaced the remaining one with 'CHECK-NOT:' as otherwise it is
failing with the following error.
error: found 'CHECK-EMPTY' without previous 'CHECK: line
TESTED = n/a
PiperOrigin-RevId: 243288605
This adds parsing, printing and some folding/canonicalization.
Also extends rewriting of subi %0, %0 to handle vectors and tensors.
--
PiperOrigin-RevId: 242448164
making the IR dumps much nicer.
This is part 2/3 of the path to making dialect types more nice. Part 3/3 will
slightly generalize the set of characters allowed in pretty types and make it
more principled.
--
PiperOrigin-RevId: 242249955
restricted grammar. This will make certain common types much easier to read.
This is part tensorflow/mlir#1 of 2, which allows us to accept the new syntax. Part 2 will
change the asmprinter to automatically use it when appropriate, which will
require updating a bunch of tests.
This is motivated by the EuroLLVM tutorial and cleaning up the LLVM dialect aesthetics a bit more.
--
PiperOrigin-RevId: 242234821
Example:
func @unknown_std_op() {
%0 = "std.foo_bar_op"() : () -> index
return
}
Will result in:
error: unregistered operation 'std.foo_bar_op' found in dialect ('std') that does not allow unknown operations
--
PiperOrigin-RevId: 241266009
have no standard ops for working with these yet, this is simply enough to
represent and round trip them in the printer and parser.
--
PiperOrigin-RevId: 241102728
Example:
%call:2 = call @multi_return() : () -> (f32, i32)
use(%calltensorflow/mlir#0, %calltensorflow/mlir#1)
This cl also adds parser support for uniquely named result values. This means that a test writer can now write something like:
%foo, %bar = call @multi_return() : () -> (f32, i32)
use(%foo, %bar)
Note: The printer will still print the collapsed form.
PiperOrigin-RevId: 240860058
Due to legacy reasons (ML/CFG function separation), regions in affine control
flow operations require contained blocks not to have terminators. This is
inconsistent with the notion of the block and may complicate code motion
between regions of affine control operations and other regions.
Introduce `affine.terminator`, a special terminator operation that must be used
to terminate blocks inside affine operations and transfers the control back to
he region enclosing the affine operation. For brevity and readability reasons,
allow `affine.for` and `affine.if` to omit the `affine.terminator` in their
regions when using custom printing and parsing format. The custom parser
injects the `affine.terminator` if it is missing so as to always have it
present in constructed operations.
Update transformations to account for the presence of terminator. In
particular, most code motion transformation between loops should leave the
terminator in place, and code motion between loops and non-affine blocks should
drop the terminator.
PiperOrigin-RevId: 240536998
Currently, regions can only be constructed by passing in a `Function` or an
`Instruction` pointer referencing the parent object, unlike `Function`s or
`Instruction`s themselves that can be created without a parent. It leads to a
rather complex flow in operation construction where one has to create the
operation first before being able to work with its regions. It may be
necessary to work with the regions before the operation is created. In
particular, in `build` and `parse` functions that are executed _before_ the
operation is created in cases where boilerplate region manipulation is required
(for example, inserting the hypothetical default terminator in affine regions).
Allow creating standalone regions. Such regions are meant to own a list of
blocks and transfer them to other regions on demand.
Each instruction stores a fixed number of regions as trailing objects and has
ownership of them. This decreases the size of the Instruction object for the
common case of instructions without regions. Keep this behavior intact. To
allow some flexibility in construction, make OperationState store an owning
vector of regions. When the Builder creates an Instruction from
OperationState, the bodies of the regions are transferred into the
instruction-owned regions to minimize copying. Thus, it becomes possible to
fill standalone regions with blocks and move them to an operation when it is
constructed, or move blocks from a region to an operation region, e.g., for
inlining.
PiperOrigin-RevId: 240368183
Dialect attributes are defined as:
dialect-namespace `.` attr-name `:` attribute-value
Dialects can override any of the following hooks to verify the validity of a given attribute:
* verifyFunctionAttribute
* verifyFunctionArgAttribute
* verifyInstructionAttribute
PiperOrigin-RevId: 236507970
Add support for lowering DivF and RemF to LLVM::FDiv and LLMV::FRem
respectively. The lowering is a trivial one-to-one transformation.
The corresponding operations already existed in the LLVM IR dialect and can be
lowered to the LLVM IR proper. Add the necessary tests for scalar and vector
forms.
PiperOrigin-RevId: 234984608
Associates opaque constants with a particular dialect. Adds general mechanism to register dialect-specific hooks defined in external components. Adds hooks to decode opaque tensor constant and extract an element of an opaque tensor constant.
This CL does not change the existing mechanism for registering constant folding hook yet. One thing at a time.
PiperOrigin-RevId: 233544757
Aggregate types where at least one dimension is zero do not fully make sense as
they cannot contain any values (their total size is zero). However, TensorFlow
and XLA support tensors with zero sizes, so we must support those too. This is
relatively safe since, unlike vectors and memrefs, we don't have first-class
element accessors for MLIR tensors.
To support sparse element attributes of vector types that have no non-zero
elements, make sure that index and value element attributes have tensor type so
that we never need to create a zero vector type internally. Note that this is
already consistent with the inline documentation of the sparse elements
attribute. Users of the sparse elements attribute should not rely on the
storage schema anyway.
PiperOrigin-RevId: 232896707
Existing IR syntax is ambiguous in type declarations in presence of zero sizes.
In particular, `0x1` in the type size can be interpreted as either a
hexadecimal literal corresponding to 1, or as two distinct decimal literals
separated by an `x` for sizes. Furthermore, the shape `<0xi32>` fails lexing
because it is expected to be an integer literal.
Fix the lexer to treat `0xi32` as an integer literal `0` followed by a bare
identifier `xi32` (look one character ahead and early return instead of
erroring out).
Disallow hexadecimal literals in type declarations and forcibly split the token
into multiple parts while parsing the type. Note that the splitting trick has
been already present to separate the element type from the preceding `x`
character.
PiperOrigin-RevId: 232880373
Existing type syntax contains the following productions:
function-type ::= type-list-parens `->` type-list
type-list ::= type | type-list-parens
type ::= <..> | function-type
Due to these rules, when the parser sees `->` followed by `(`, it cannot
disambiguate if `(` starts a parenthesized list of function result types, or a
parenthesized list of operands of another function type, returned from the
current function. We would need an unknown amount of lookahead to try to find
the `->` at the right level of function nesting to differentiate between type
lists and singular function types.
Instead, require the result type of the function that is a function type itself
to be always parenthesized, at the syntax level. Update the spec and the
parser to correspond to the production rule names used in the spec (although it
would have worked without modifications). Fix the function type parsing bug in
the process, as it used to accept the non-parenthesized list of types for
arguments, disallowed by the spec.
PiperOrigin-RevId: 232528361
In optional attribute dictionary used, among others, in the generic form of the
ops, attribute types for integers and floats are omitted. This could lead to
inconsistencies when round-tripping the IR, in particular the attributes are
created with incorrect types after parsing (integers default to i64, floats
default to f64). Provide API to emit a trailing type after the attribute for
integers and floats. Use it while printing the optional attribute dictionary.
Omitting types for i64 and f64 is a pragmatic decision that minimizes changes
in tests. We may want to reconsider in the future and always print types of
attributes in the generic form.
PiperOrigin-RevId: 232480116
The generic form may be more desirable even when there is a custom form
specified so add option to enable emitting it. This also exposes a current bug
when round tripping constant with function attribute.
PiperOrigin-RevId: 232350712
This CL mandated TypeConstraint and Type to provide descriptions and fixed
various subclasses and definitions to provide so. The purpose is to enforce
good documentation; using empty string as the default just invites oversight.
PiperOrigin-RevId: 231579629
Use `-mlir-pretty-debuginfo` if the user wants line breaks between different callsite lines.
The print results before and after this CL are shown in the tests.
PiperOrigin-RevId: 231013812
Example inline notation:
trailing-location ::= 'loc' '(' location ')'
// FileLineCol Location.
%1 = "foo"() : () -> i1 loc("mysource.cc":10:8)
// Name Location
return loc("foo")
// CallSite Location
return loc(callsite("foo" at "mysource.cc":19:9))
// Fused Location
/// Without metadata
func @inline_notation() loc(fused["foo", "mysource.cc":10:8])
/// With metadata
return loc(fused<"myPass">["foo", "foo2"])
// Unknown location.
return loc(unknown)
Locations are currently only printed with inline notation at the line of each instruction. Further work is needed to allow for reference notation, e.g:
...
return loc 1
}
...
loc 1 = "source.cc":10:1
PiperOrigin-RevId: 230587621
- print multiplication by -1 as unary negate; expressions like s0 * -1, d0 * -1
+ d1 will now appear as -s0, -d0 + d1 resp.
- a minor cleanup while on printAffineExprInternal
PiperOrigin-RevId: 230222151
MLIR has support for type-polymorphic instructions, i.e. instructions that may
take arguments of different types. For example, standard arithmetic operands
take scalars, vectors or tensors. In order to express such instructions in
TableGen, we need to be able to verify that a type object satisfies certain
constraints, but we don't need to construct an instance of this type. The
existing TableGen definition of Type requires both. Extract out a
TypeConstraint TableGen class to define restrictions on types. Define the Type
TableGen class as a subclass of TypeConstraint for consistency. Accept records
of the TypeConstraint class instead of the Type class as values in the
Arguments class when defining operators.
Replace the predicate logic TableGen class based on conjunctive normal form
with the predicate logic classes allowing for abitrary combinations of
predicates using Boolean operators (AND/OR/NOT). The combination is
implemented using simple string rewriting of C++ expressions and, therefore,
respects the short-circuit evaluation order. No logic simplification is
performed at the TableGen level so all expressions must be valid C++.
Maintaining CNF using TableGen only would have been complicated when one needed
to introduce top-level disjunction. It is also unclear if it could lead to a
significantly simpler emitted C++ code. In the future, we may replace inplace
predicate string combination with a tree structure that can be simplified in
TableGen's C++ driver.
Combined, these changes allow one to express traits like ArgumentsAreFloatLike
directly in TableGen instead of relying on C++ trait classes.
PiperOrigin-RevId: 229398247
DenseElementAttr currently does not support value bitwidths of > 64. This can result in asan failures and crashes when trying to invoke DenseElementsAttr::writeBits/DenseElementsAttr::readBits.
PiperOrigin-RevId: 229241125
Originally, terminators were special kinds of operation and could not be
extended by dialects. Only builtin terminators were supported and they had
custom parsers and printers. Currently, "terminator" is a property of an
operation, making it possible for dialects to define custom terminators.
However, verbose forms of operation syntax were not designed to support
terminators that may have a list of successors (each successor contains a block
name and an optional operand list). Calling printDefaultOp on a terminator
drops all successor information. Dialects are thus required to provide custom
parsers and printers for their terminators.
Introduce the syntax for the list of successors in the verbose from of the
operation. Add support for printing and parsing verbose operations with
successors.
Note that this does not yet add support for unregistered terminators since
"terminator" is a property stored in AsbtractOperation and therefore is only
available for registered operations that have an instance of AbstractOperation.
Add tests for verbose parsing. It is currently impossible to test round-trip
for verbose terminators because none of the known dialects use verbose syntax
for printing terminators by default, however the printer was exercised on the
LLVM IR dialect prototype.
PiperOrigin-RevId: 228566453
Alias identifiers can be used in the place of the types that they alias, and are defined as:
type-alias-def ::= '!' alias-name '=' 'type' type
type-alias ::= '!' alias-name
Example:
!avx.m128 = type vector<4 x f32>
...
"foo"(%x) : vector<4 x f32> -> ()
// becomes:
"foo"(%x) : !avx.m128 -> ()
PiperOrigin-RevId: 228271372
The `for` instruction defines the loop induction variable it uses. In the
well-formed IR, the induction variable can only be used by the body of the
`for` loop. Existing implementation was explicitly cleaning the body of the
for loop to remove all uses of the induction variable before removing its
definition. However, in ill-formed IR that may appear in some stages of
parsing, there may be (invalid) users of the loop induction variable outside
the loop body. In case of unsuccessful parsing, destructor of the
ForInst-defined Value would assert because there are remaining though invalid
users of this Value. Explicitly drop all uses of the loop induction Value when
destroying a ForInst. It is no longer necessary to explicitly clean the body
of the loop, destructor of the block will take care of this.
PiperOrigin-RevId: 228168880
When destroying a FunctionParser in case of parsing failure, we clean up all
uses of undefined forward-declared references. This has been implemented as
iteration over the list of uses. However, deleting one use from the list
invalidates the iterator (`IROperand::drop` sets `nextUse` to `nullptr` while
the iterator reads `nextUse` to advance; therefore only the first use was
deleted from the list). Get a new iterator before calling drop to avoid
invalidation.
PiperOrigin-RevId: 228168849
This adds signed/unsigned integer division and remainder operations to the
StandardOps dialect. Two versions are required because MLIR integers are
signless, but the meaning of the leading bit is important in division and
affects the results. LLVM IR made a similar choice. Define the operations in
the tablegen file and add simple constant folding hooks in the C++
implementation. Handle signed division overflow and division by zero errors in
constant folding. Canonicalization is left for future work.
These operations are necessary to lower affine_apply's down to LLVM IR.
PiperOrigin-RevId: 228077549
symbols.
Included with this is some other infra:
- Testcases for other canonicalizations that I will implement next.
- Some helpers in AffineMap/Expr for doing simple walks without defining whole
visitor classes.
- A 'replaceDimsAndSymbols' facility that I'll be using to simplify maps and
exprs, e.g. to fold one constant into a mapping and to drop/renumber unused dims.
- Allow index (and everything else) to work in memref's, as we previously
discussed, to make the testcase easier to write.
- A "getAffineBinaryExpr" helper to produce a binop when you know the kind as
an enum.
This line of work will eventually subsume the ComposeAffineApply pass, but it is no where close to that yet :-)
PiperOrigin-RevId: 227852951
Dialect specific types are registered similarly to operations, i.e. registerType<...> within the dialect. Unlike operations, there is no notion of a "verbose" type, that is *all* types must be registered to a dialect. Casting support(isa/dyn_cast/etc.) is implemented by reserving a range of type kinds in the top level Type class as opposed to string comparison like operations.
To support derived types a few hooks need to be implemented:
In the concrete type class:
- static char typeID;
* A unique identifier for the type used during registration.
In the Dialect:
- typeParseHook and typePrintHook must be implemented to provide parser support.
The syntax for dialect extended types is as follows:
dialect-type: '!' dialect-namespace '<' '"' type-specific-data '"' '>'
The 'type-specific-data' is information used to identify different types within the dialect, e.g:
- !tf<"variant"> // Tensor Flow Variant Type
- !tf<"string"> // Tensor Flow String Type
TensorFlow/TensorFlowControl types are now implemented as dialect specific types as a proof
of concept.
PiperOrigin-RevId: 227580052
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.
This is step 31/n towards merging instructions and statements. The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.
PiperOrigin-RevId: 227540453
runOnCFG/MLFunction override locations. Passes that care can handle this
filtering if they choose. Also, eliminate one needless difference between
CFG/ML functions in the parser.
This is step 30/n towards merging instructions and statements.
PiperOrigin-RevId: 227515912
printing the entry block in a CFG function's argument line. Since I'm touching
all of the testcases anyway, change the argument list from printing as
"%arg : type" to "%arg: type" which is more consistent with bb arguments.
In addition to being more consistent, this is a much nicer look for cfg functions.
PiperOrigin-RevId: 227240069
have a designator. This improves diagnostics and merges handling between CFG
and ML functions more. This also eliminates hard coded parser knowledge of
terminator keywords, allowing dialects to define their own terminators.
PiperOrigin-RevId: 227239398
requires enhancing DominanceInfo to handle the structure of an ML function,
which is required anyway. Along the way, this also fixes a const correctness
problem with Instruction::getBlock().
This is step 24/n towards merging instructions and statements.
PiperOrigin-RevId: 227228900
the function signature, giving them common functionality to ml functions. This
is a strictly additive patch that adds new capability without changing behavior
in a significant way (other than a few diagnostic cleanups). A subsequent
patch will change the printer to use this behavior, which will require updating
a ton of testcases. :)
This exposes the fact that we need to make a grammar change for block
arguments, as is tracked by b/122119779
This is step 23/n towards merging instructions and statements, and one of the
first steps towards eliminating the "cfg vs ml" distinction at a syntax and
semantic level.
PiperOrigin-RevId: 227228342
by ~80 lines. This causes a slight change to diagnostics, but
is otherwise behavior preserving.
This is step 22/n towards merging instructions and statements, MFC.
PiperOrigin-RevId: 227187857
consistent and moving the using declarations over. Hopefully this is the last
truly massive patch in this refactoring.
This is step 21/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227178245
Store FloatAttr using more appropriate fltSemantics (mostly fixing up F32/F64 storage, F16/BF16 pending). Previously F32 type was used incorrectly for double (the storage was double). Also add query method that returns fltSemantics for IEEE fp types and use that to verify that the APfloat given matches the type:
* FloatAttr created using APFloat is verified that the semantics of the type and APFloat matches;
* FloatAttr created using double has the APFloat created to match the semantics of the type;
Change parsing of tensor negative splat element to pass in the element type expected. Misc other changes to account for the storage type matching the attribute.
PiperOrigin-RevId: 225821834
An extensive discussion demonstrated that it is difficult to support `index`
types as elements of compound (vector, memref, tensor) types. In particular,
their size is unknown until the target-specific lowering takes place. MLIR may
need to store constants of the fixed-shape compound types (e.g.,
vector<4 x index>) internally and must know the size of the element type and
data layout constraints. The same information is necessary for target-specific
lowering and translation to reliably support compound types with `index`
elements, but MLIR does not have a dedicated target description mechanism yet.
The uses cases for compound types with `index` elements, should they appear,
can be handled via an `index_cast` operation that converts between `index` and
fixed-size integer types at the SSA value level instead of the type level.
PiperOrigin-RevId: 225064373
This CL hooks up and uses permutation_map in vector_transfer ops.
In particular, when going into the nuts and bolts of the implementation, it
became clear that cases arose that required supporting broadcast semantics.
Broadcast semantics are thus added to the general permutation_map.
The verify methods and tests are updated accordingly.
Examples of interest include.
Example 1:
The following MLIR snippet:
```mlir
for %i3 = 0 to %M {
for %i4 = 0 to %N {
for %i5 = 0 to %P {
%a5 = load %A[%i4, %i5, %i3] : memref<?x?x?xf32>
}}}
```
may vectorize with {permutation_map: (d0, d1, d2) -> (d2, d1)} into:
```mlir
for %i3 = 0 to %0 step 32 {
for %i4 = 0 to %1 {
for %i5 = 0 to %2 step 256 {
%4 = vector_transfer_read %arg0, %i4, %i5, %i3
{permutation_map: (d0, d1, d2) -> (d2, d1)} :
(memref<?x?x?xf32>, index, index) -> vector<32x256xf32>
}}}
````
Meaning that vector_transfer_read will be responsible for reading the 2-D slice:
`%arg0[%i4, %i5:%15+256, %i3:%i3+32]` into vector<32x256xf32>. This will
require a transposition when vector_transfer_read is further lowered.
Example 2:
The following MLIR snippet:
```mlir
%cst0 = constant 0 : index
for %i0 = 0 to %M {
%a0 = load %A[%cst0, %cst0] : memref<?x?xf32>
}
```
may vectorize with {permutation_map: (d0) -> (0)} into:
```mlir
for %i0 = 0 to %0 step 128 {
%3 = vector_transfer_read %arg0, %c0_0, %c0_0
{permutation_map: (d0, d1) -> (0)} :
(memref<?x?xf32>, index, index) -> vector<128xf32>
}
````
Meaning that vector_transfer_read will be responsible of reading the 0-D slice
`%arg0[%c0, %c0]` into vector<128xf32>. This will require a 1-D vector
broadcast when vector_transfer_read is further lowered.
Additionally, some minor cleanups and refactorings are performed.
One notable thing missing here is the composition with a projection map during
materialization. This is because I could not find an AffineMap composition
that operates on AffineMap directly: everything related to composition seems
to require going through SSAValue and only operates on AffinMap at a distance
via AffineValueMap. I have raised this concern a bunch of times already, the
followup CL will actually do something about it.
In the meantime, the projection is hacked at a minimum to pass verification
and materialiation tests are temporarily incorrect.
PiperOrigin-RevId: 224376828
- add optional stride arguments for DmaStartOp
- add DmaStartOp::verify(), and missing test cases for DMA op's in
test/IR/memory-ops.mlir.
PiperOrigin-RevId: 224232466
This CL implements and uses VectorTransferOps in lieu of the former custom
call op. Tests are updated accordingly.
VectorTransferOps come in 2 flavors: VectorTransferReadOp and
VectorTransferWriteOp.
VectorTransferOps can be thought of as a backend-independent
pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before
it can be lowered to backend-dependent IR.
Note that the current implementation does not yet support a real permutation
map. Proper support will come in a followup CL.
VectorTransferReadOp
====================
VectorTransferReadOp performs a blocking read from a scalar memref
location into a super-vector of the same elemental type. This operation is
called 'read' by opposition to 'load' because the super-vector granularity
is generally not representable with a single hardware register. As a
consequence, memory transfers will generally be required when lowering
VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction
that supports super-vectorization with non-effecting padding for full-tile
only code.
A vector transfer read has semantics similar to a vector load, with additional
support for:
1. an optional value of the elemental type of the MemRef. This value
supports non-effecting padding and is inserted in places where the
vector read exceeds the MemRef bounds. If the value is not specified,
the access is statically guaranteed to be within bounds;
2. an attribute of type AffineMap to specify a slice of the original
MemRef access and its transposition into the super-vector shape. The
permutation_map is an unbounded AffineMap that must represent a
permutation from the MemRef dim space projected onto the vector dim
space.
Example:
```mlir
%A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>
...
%val = `ssa-value` : f32
// let %i, %j, %k, %l be ssa-values of type index
%v0 = vector_transfer_read %src, %i, %j, %k, %l
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
(memref<?x?x?x?xf32>, index, index, index, index) ->
vector<16x32x64xf32>
%v1 = vector_transfer_read %src, %i, %j, %k, %l, %val
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
(memref<?x?x?x?xf32>, index, index, index, index, f32) ->
vector<16x32x64xf32>
```
VectorTransferWriteOp
=====================
VectorTransferWriteOp performs a blocking write from a super-vector to
a scalar memref of the same elemental type. This operation is
called 'write' by opposition to 'store' because the super-vector
granularity is generally not representable with a single hardware register. As
a consequence, memory transfers will generally be required when lowering
VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level
abstraction that supports super-vectorization with non-effecting padding
for full-tile only code.
A vector transfer write has semantics similar to a vector store, with
additional support for handling out-of-bounds situations.
Example:
```mlir
%A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>.
%val = `ssa-value` : vector<16x32x64xf32>
// let %i, %j, %k, %l be ssa-values of type index
vector_transfer_write %val, %src, %i, %j, %k, %l
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
(vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index)
```
PiperOrigin-RevId: 223873234
This CL added two new traits, SameOperandsAndResultShape and
ResultsAreBoolLike, and changed CmpIOp to embody these two
traits. As a consequence, CmpIOp's result type now is verified
to be bool-like.
PiperOrigin-RevId: 223208438
The semantics of 'select' is conventional: return the second operand if the
first operand is true (1 : i1) and the third operand otherwise. It is
applicable to vectors and tensors element-wise, similarly to LLVM instruction.
This operation is necessary to implement min/max to lower 'for' loops with
complex bounds to CFG functions and to support ternary operations in ML
functions. It is preferred to first-class min/max because of its simplicity,
e.g. it is not concered with signedness.
PiperOrigin-RevId: 223160860
Translations performed by mlir-translate only have MLIR on one end.
MLIR-to-MLIR conversions (including dialect changes) should be treated as
passes and run by mlir-opt. Individual translations should not care about
reading or writing MLIR and should work on in-memory representation of MLIR
modules instead. Split the TranslateFunction interface and the translate
registry into two parts: "from MLIR" and "to MLIR".
Update mlir-translate to handle both registries together by wrapping
translation functions into source-to-source convresions. Remove MLIR parsing
and writing from individual translations and make them operate on Modules
instead. This removes the need for individual translators to include
tools/mlir-translate/mlir-translate.h, which can now be safely removed.
Remove mlir-to-mlir translation that only existed as a registration example and
use mlir-opt instead for tests.
PiperOrigin-RevId: 222398707
op-stats pass currently returns the number of occurrences of different operations in a Module. Useful for verifying transformation properties (e.g., 3 ops of specific dialect, 0 of another), but probably not useful outside of that so keeping it local to mlir-opt. This does not consider op attributes when counting.
PiperOrigin-RevId: 222259727
This does create an inconsistency between the print formats (e.g., attributes are normally before operands) but fixes an invalid parsing & keeps constant uniform wrt itself (function or int attributes have type at same place). And specifying the specific type for a int/float attribute might get revised shortly.
Also add test to verify that output printed can be parsed again.
PiperOrigin-RevId: 221923893
* Optionally attach the type of integer and floating point attributes to the attributes, this allows restricting a int/float to specific width.
- Currently this allows suffixing int/float constant with type [this might be revised in future].
- Default to i64 and f32 if not specified.
* For index types the APInt width used is 64.
* Change callers to request a specific attribute type.
* Store iN type with APInt of width N.
* This change does not handle the folding of constants of different types (e.g., doing int type promotions to support constant folding i3 and i32), and instead restricts the constant folding to only operate on the same types.
PiperOrigin-RevId: 221722699
This was unsafe after cr/219372163 and seems to be the only such case in the
change. All other usage of dyn_cast are either handling the nullptr or are
implicitly safe. For example, they are being extracted from operand or result
SSAValue.
TESTED with unit test
PiperOrigin-RevId: 220905942
This CL introduces the following related changes:
- factor out element type validity checking to a static member function
VectorType::isValidElementType;
- introduce get/getChecked similarly to MemRefType, where the checked function
emits errors and returns nullptrs;
- remove duplicate element type validity checking from the parser and rely on
the type constructor to emit errors instead.
PiperOrigin-RevId: 220693828
It is unclear why vector types were not allowed to have "index" as element
type. Index values are integers, although of unknown bit width, and should
behave as such. Vectors of integers are allowed and so are tensors of indices
(for indirection purposes), it is more consistent to also have vectors of
indices.
PiperOrigin-RevId: 220630123
Arithmetic and comparison instructions are necessary to implement, e.g.,
control flow when lowering MLFunctions to CFGFunctions. (While it is possible
to replace some of the arithmetics by affine_apply instructions for loop
bounds, it is still necessary for loop bounds checking, steps, if-conditions,
non-trivial memref subscripts, etc.) Furthermore, working with indirect
accesses in, e.g., lookup tables for large embeddings, may require operating on
tensors of indexes. For example, the equivalents to C code "LUT[Index[i]]" or
"ResultIndex[i] = i + j" where i, j are loop induction variables require the
arithmetics on indices as well as the possibility to operate on tensors
thereof. Allow arithmetic and comparison operations to apply to index types by
declaring them integer-like. Allow tensors whose element type is index for
indirection purposes.
The absence of vectors with "index" element type is explicitly tested, but the
only justification for this restriction in the CL introducing the test is
"because we don't need them". Do NOT enable vectors of index types, although
it makes vector and tensor types inconsistent with respect to allowed element
types.
PiperOrigin-RevId: 220614055
This binary operation is applicable to integers, vectors and tensors thereof
similarly to binary arithmetic operations. The operand types must match
exactly, and the shape of the result type is the same as that of the operands.
The element type of the result is always i1. The kind of the comparison is
defined by the "predicate" integer attribute. This attribute requests one of:
- equals to;
- not equals to;
- signed less than;
- signed less than or equals;
- signed greater than;
- signed greater than or equals;
- unsigned less than;
- unsigned less than or equals;
- unsigned greater than;
- unsigned greater than or equals.
Since integer values themselves do not have a sign, the comparison operator
specifies whether to use signed or unsigned comparison logic, i.e. whether to
interpret values where the foremost bit is set as negatives expressed as two's
complements or as positive values. For non-scalar operands, pairwise
per-element comparison is performed. Comparison operators on scalars are
necessary to implement basic control flow with conditional branches.
PiperOrigin-RevId: 220613566
Introduce a new public static member function, MemRefType::getChecked, intended
for the users that want detailed error messages to be emitted during MemRefType
construction and can gracefully handle these errors. This function takes a
Location of the "MemRef" token if known. The parser is one user of getChecked
that has location information, it outputs errors as compiler diagnostics.
Other users may pass in an instance of UnknownLoc and still have error messages
emitted. Compiler-internal users not expecting the MemRefType construction to
fail should call MemRefType::get, which now aborts on failure with a generic
message.
Both "getChecked" and "get" call to a static free function that does actual
construction with well-formedness checks, optionally emits errors and returns
nullptr on failure.
The location information passed to getChecked has voluntarily coarse precision.
The error messages are intended for compiler engineers and do not justify
heavier API than a single location. The text of the messages can be written so
that it pinpoints the actual location of the error within a MemRef declaration.
PiperOrigin-RevId: 219765902
Unbounded identity maps do not affect the accesses through MemRefs in any way.
A previous CL dropped such maps only if they were alone in the composition. Go
further and drop such maps everywhere they appear in the composition.
Update the parser test to check for unique'd hoisted map to be present but
without assuming any particular order. Because some of the hoisted identity
maps still apear due to the nested "for" statements, we need to check for them.
However, they no longer appear above the non-identity maps because they are no
longer necessary for the extfunc memref declarations that are textually first
in the test file. This order may change further as map simplification is
improved, there is no reason to assume a particular order.
PiperOrigin-RevId: 219287280
- Added a mechanism for specifying pattern matching more concisely like LLVM.
- Added support for canonicalization of addi/muli over vector/tensor splat
- Added ValueType to Attribute class hierarchy
- Allowed creating constant splat
PiperOrigin-RevId: 219149621
As per MLIR spec, the absence of affine maps in MemRef type is interpreted as
an implicit identity affine map. Therefore, MemRef types declared with
explicit or implicit identity map should be considered equal at the MemRefType
level. During MemRefType construction, drop trivial identity affine map
compositions. A trivial identity composition consists of a single unbounded
identity map. It is unclear whether affine maps should be composed in-place to
a single map during MemRef type construction, so non-trivial compositions that
could have been simplified to an identity are NOT removed. We chose to drop
the trivial identity map rather than inject it in places that assume its
present implicitly because it makes the code simpler by reducing boilerplate;
identity mappings are obvious defaults.
Update tests that were checking for the presence of trivial identity map
compositions in the outputs.
PiperOrigin-RevId: 218862454
This check was being performed in AllocOp::verify. However it is not specific
to AllocOp and should apply to all MemRef type declarations. At the same time,
the unique *Type factory functions in MLIRContext do not have access to
location information necessary to properly emit diagnostics. Emit the error in
Parser where the location information is available. Keep the error emission in
AllocOp for the cases of programmatically-constructed, e.g. through Builders,
IR with a note. Once we decided on the diagnostic infrastructure in type
construction system, the type-related checks should be removed from specific
Ops.
Correct several parser test cases that have been using affine maps of
mismatching dimensionality.
This CL prepares for an upcoming change that will drop trivial identity affine
map compositions during MemRefType construction. In that case, the
dimensionality mismatch error must be emitted before dropping the identity map,
i.e. during the type construction at the latest and before "verify" being
called.
PiperOrigin-RevId: 218844127
"shape_cast" only applies to tensors, and there are other operations that
actually affect shape, for example "reshape". Rename "shape_cast" to
"tensor_cast" in both the code and the documentation.
PiperOrigin-RevId: 218528122
For some of the constant vector / tesor, if the compiler doesn't need to
interpret their elements content, they can be stored in this class to save the
serialize / deserialize cost.
syntax:
`opaque<` tensor-type `,` opaque-string `>`
opaque-string ::= `0x` [0-9a-fA-F]*
PiperOrigin-RevId: 218399426
This was left as a TODO in the code. Move the type verification from
MLFuncVerifier::verifyReturn to ReturnOp::verify. Since the return operation
can only appear as the last statement of an MLFunction, i.e. where the
surrounding block is the function itself, it is easy to access the function
descriptor (ReturnOp::verify already relies on this). From the function
descriptor, one can easily access the type information. Note that this
slightly modifies the error message due to the use of emitOpError instead of a
plain emitError.
Drop the obsolete TODO comment in MLFunction::verify about checking that
"return" only appears as the last operation of an MLFunction since
ReturnOp::verify explicitly checks for that.
PiperOrigin-RevId: 218347843
This was left as a TODO in the code. Note that the spec does not explicitly
prohibit the first basic block from having a predecessor, and may be worth
updating.
The error is reported at the location of the cfgfunc to which the basic block
belongs since the location information of the block label is not propagated
beyond the IR parser. Arguably, pointing to a function that starts with an
ill-formed block is better than pointing to the first operation in that block
as it makes easier to follow the code down until the first block label.
PiperOrigin-RevId: 218343654
The SparseElementsAttr uses (COO) Coordinate List encoding to represents a
sparse tensor / vector. Specifically, the coordinates and values are stored as
two dense elements attributes. The first dense elements attribute is a 2-D
attribute with shape [N, ndims], which contains the indices of the elements
with nonzero values in the constant vector/tensor. The second elements
attribute is a 1-D attribute list with shape [N], which supplies the values for
each element in the first elements attribute. ndims is the rank of the
vector/tensor and N is the total nonzero elements.
The syntax is:
`sparse<` (tensor-type | vector-type)`, ` indices-attribute-list, values-attribute-list `>`
Example: a sparse tensor
sparse<vector<3x4xi32>, [[0, 0], [1, 2]], [1, 2]> represents the dense tensor
[[1, 0, 0, 0]
[0, 0, 2, 0]
[0, 0, 0, 0]]
PiperOrigin-RevId: 217764319
The syntax of dense vecor/tensor attribute value is
`dense<` (tensor-type | vector-type)`,` attribute-list`>`
and
attribute-list ::= `[` attribute-list (`, ` attribute-list)* `]`.
The construction of the dense vector/tensor attribute takes a vector/tensor
type and a character array as arguments. The size of the input array should be
larger than the size specified by the type argument. It also assumes the
elements of the vector or tensor have been trunked to the data type sizes in
the input character array, so it extends the trunked data to 64 bits when it is
retrieved.
PiperOrigin-RevId: 217762811
Associate BasicBlocks with the function being parsed to avoid leaks in the case of parse failures. Associating with the function means that we can no longer determine if defined/fwd declared simply by considering if a BasicBlock has an associated function, so track forward declared block references explicitly (this should also allow flagging multiple undeclared fwd references). Split out getting the named block from defining it, in the case of definition move the block to the end of the function.
Also destroy all forward reference placeholders in FunctionParser.
Return parse failure in parseAttributeDict if there is no left brace instead of
asserting.
PiperOrigin-RevId: 217049507
This attribute represents a reference to a splat vector or tensor, where all
the elements have the same value. The syntax of the attribute is:
`splat<` (tensor-type | vector-type)`,` attribute-value `>`
PiperOrigin-RevId: 216537997
1) affineint (as it is named) is not a type suitable for general computation (e.g. the multiply/adds in an integer matmul). It has undefined width and is undefined on overflow. They are used as the indices for forstmt because they are intended to be used as indexes inside the loop.
2) It can be used in both cfg and ml functions, and in cfg functions. As you mention, “symbols” are not affine, and we use affineint values for symbols.
3) Integers aren’t affine, the algorithms applied to them can be. :)
4) The only suitable use for affineint in MLIR is for indexes and dimension sizes (i.e. the bounds of those indexes).
PiperOrigin-RevId: 216057974
- introduce mlir::{floorDiv, ceilDiv, mod} for constant inputs in
mlir/Support/MathExtras.h
- consistently use these everywhere in IR, Analysis, and Transforms.
PiperOrigin-RevId: 215580677
mode. We even diagnose mistakes nicely (aside from the a/an vowel confusion
which isn't worth worrying about):
test/IR/invalid.mlir split at line tensorflow/mlir#399:8:34: error: 'note' diagnostic emitted when expecting a 'error'
%x = "bar"() : () -> i32 // expected-error {{operand defined here}}
^
PiperOrigin-RevId: 214773208
This CL retricts shorthand notation printing to only the bounds that can
be roundtripped unambiguously; i.e.:
1. ()[]->(%some_cst) ()[]
2. ()[s0]->(s0) ()[%some_symbol]
Upon inspection it turns out that the constant case was lossy so this CL also
updates it.
Note however that fixing this issue exhibits a potential issues in unroll.mlir.
L488 exhibits a map ()[s0] -> (1)()[%arg0] which could be simplified down to
()[]->(1)()[].
This does not seem like a bug but maybe an undesired complexity in the maps
generated by unrolling.
bondhugula@, care to take a look?
PiperOrigin-RevId: 214531410
This CL adds support for `mulf` which is necessary to write/emit a simple scalar
matmul in MLIR. This CL does not consider automation of generation of ops but
mulf is important and useful enough to be added on its own atm.
PiperOrigin-RevId: 214496098
The AsmPrinter wrongly assumes that all single ssa-id AffineMap
are the identity map for the purpose of printing.
This CL adds the missing level of indirection as well as a test.
This bug was originally shaken off by the experimental TC->MLIR path.
Before this CL, the test would print:
```
mlfunc @mlfuncsimplemap(%arg0 : affineint, %arg1 : affineint, %arg2 : affineint) {
for %i0 = 0 to %arg0 {
for %i1 = 0 to %i0 {
~~~ should be %arg1
%c42_i32 = constant 42 : i32
}
}
return
}
```
PiperOrigin-RevId: 214120817
verifier. We get most of this infrastructure directly from LLVM, we just
need to adapt it to our CFG abstraction.
This has a few unrelated changes engangled in it:
- getFunction() in various classes was const incorrect, fix it.
- This moves Verifier.cpp to the analysis library, since Verifier depends on
dominance and these are both really analyses.
- IndexedAccessorIterator::reference was defined wrong, leading to really
exciting template errors that were fun to diagnose.
- This flips the boolean sense of the foldOperation() function in constant
folding pass in response to previous patch feedback.
PiperOrigin-RevId: 214046593
optimization pass:
- Give the ability for operations to implement a constantFold hook (a simple
one for single-result ops as well as general support for multi-result ops).
- Implement folding support for constant and addf.
- Implement support in AbstractOperation and Operation to make this usable by
clients.
- Implement a very simple constant folding pass that does top down folding on
CFG and ML functions, with a testcase that exercises all the above stuff.
Random cleanups:
- Improve the build APIs for ConstantOp.
- Stop passing "-o -" to mlir-opt in the testsuite, since that is the default.
PiperOrigin-RevId: 213749809
mlir-translate is a tool to translate from/to MLIR. The translations are registered at link time and intended for use in tests. An identity transformation (mlir-to-mlir) is registered by default as example and used in the parser test where simply parsing & printing required.
The TranslateFunctions take filenames (instead of MemoryBuffer) to allow translations special write behavior (e.g., writing to uncommon filesystems).
PiperOrigin-RevId: 213370448
unroll/unroll-and-jam more powerful; add additional affine expr builder methods
- use previously added analysis/simplification to infer multiple of unroll
factor trip counts, making loop unroll/unroll-and-jam more general.
- for loop unroll, support bounds that are single result affine map's with the
same set of operands. For unknown loop bounds, loop unroll will now work as
long as trip count can be determined to be a multiple of unroll factor.
- extend getConstantTripCount to deal with single result affine map's with the
same operands. move it to mlir/Analysis/LoopAnalysis.cpp
- add additional builder utility methods for affine expr arithmetic
(difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to
use the utility methods.
- move affine analysis routines to AffineAnalysis.cpp/.h from
AffineStructures.cpp/.h.
- Rename LoopUnrollJam to LoopUnrollAndJam to match class name.
- add an additional simplification for simplifyFloorDiv, simplifyCeilDiv
- Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does
not have operands. Operands are passed to it through affine_apply, from loop
bounds/if condition's, etc., operands are stored in the latter.
This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU
code generation, and can move to other analyses/transformations.
Loop nests like these are now unrolled without any cleanup loop being generated.
for %i = 1 to 100 {
// unroll factor 4: no cleanup loop will be generated.
for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) {
%x = "foo"(%j) : (affineint) -> i32
}
}
for %i = 1 to 100 {
// unroll factor 4: no cleanup loop will be generated.
for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) {
%y = "foo"(%j) : (affineint) -> i32
}
}
for %i = 1 to 100 {
for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) {
%x = "foo"() : () -> i32
}
}
TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor
changes).
PiperOrigin-RevId: 212661212
Previously the error could mislead into thinking it was a parser bug instead of the input being erroneous. Update to make it clearer.
PiperOrigin-RevId: 212271145
Ensure delimiters are absent where not expected. This is only checked in the case where operand count is known. This allows for the currently accepted case where there is a operand list with no delimiter and variable number of operands (which could be empty), followed by a delimited operand list.
PiperOrigin-RevId: 212202064
- Compress the identifier/kind of a Function into a single word.
- Eliminate otherFailure from verifier now that we always have a location
- Eliminate the error string from the verifier now that we always have
locations.
- Simplify the parser's handling of fn forward references, using the location
tracked by the function.
PiperOrigin-RevId: 211985101
terminators. Improve mlir-opt to print better location info in the split-files
case.
Before:
error: unexpected error: branch has 2 operands, but target block has 1
br bb1(%0tensorflow/mlir#1, %0tensorflow/mlir#0 : i17, i1)
^
after:
invalid.mlir split at line tensorflow/mlir#305:6:3: error: unexpected error: branch has 2 operands, but target block has 1
br bb1(%0tensorflow/mlir#1, %0tensorflow/mlir#0 : i17, i1)
^
It still isn't optimal (it would be better to have just the original file and
line number but is a step forward, and doing the optimal thing would be a lot
more complicated.
PiperOrigin-RevId: 211917067
- Add a new -verify mode to the mlir-opt tool that allows writing test cases
for optimization and other passes that produce diagnostics.
- Refactor existing the -check-parser-errors flag to mlir-opt into a new
-split-input-file option which is orthogonal to -verify.
- Eliminate the special error hook the parser maintained and use the standard
MLIRContext's one instead.
- Enhance the default MLIRContext error reporter to print file/line/col of
errors when it is available.
- Add new createChecked() methods to the builder that create ops and invoke
the verify hook on them, use this to detected unhandled code in the
RaiseControlFlow pass.
- Teach mlir-opt about expected-error @+, it previously only worked with @-
PiperOrigin-RevId: 211305770
Outside of IR/
- simplify a MutableAffineMap by flattening the affine expressions
- add a simplify affine expression pass that uses this analysis
- update the FlatAffineConstraints API (to be used in the next CL)
In IR:
- add isMultipleOf and getKnownGCD for AffineExpr, and make the in-IR
simplication of simplifyMod simpler and more powerful.
- rename the AffineExpr visitor methods to distinguish b/w visiting and
walking, and to simplify API names based on context.
The next CL will use some of these for the loop unrolling/unroll-jam to make
the detection for the need of cleanup loop powerful/non-trivial.
A future CL will finally move this simplification to FlatAffineConstraints to
make it more powerful. For eg., currently, even if a mod expr appearing in a
part of the expression tree can't be simplified, the whole thing won't be
simplified.
PiperOrigin-RevId: 211012256
This CL also includes two other minor changes:
- change the implemented syntax from 'if (cond)' to 'if cond', as specified by MLIR spec.
- a minor fix to the implementation of the ForStmt.
PiperOrigin-RevId: 210618122
This commit creates a static constexpr limit for the IntegerType
bitwidth and uses it. The check had to be moved because Token is
not aware of IR/Type and it was a sign the abstraction leaked:
bitwidth limit is not a property of the Token but of the IntegerType.
Added a positive and a negative test at the limit.
PiperOrigin-RevId: 210388192
This commit adds 2 tests:
1. a negative test in which the simplification of expression does not seem satisfactory.
This test should be updated once expression simplification works reasonably.
2. a positive test in which floordiv and ceildiv return the same result, properly enforced with CHECK-NOT
PiperOrigin-RevId: 210286267
This commit replaces // CHECK-EMPTY because it is an extremely confusing way of
allowing (but not checking for) empty lines. The problem is that // CHECK-EMPTY
is **only a comment** and does not do anything.
I originally tried to use // CHECK-EMPTY: but errors occured due to missing
newlines.
The intended behavior of the test is to enforce nothing (not even a newline)
is printed and the proper way to check for this is to use CHECK-NOT.
Thanks to @rxwei for helping me figure out to use CHECK-NOT properly.
PiperOrigin-RevId: 210286262
This revamps implementation of the loop bounds in the ForStmt, using general representation that supports operands. The frequent case of constant bounds is supported
via special access methods.
This also includes:
- Operand iterators for the Statement class.
- OpPointer::is() method to query the class of the Operation.
- Support for the bound shorthand notation parsing and printing.
- Validity checks for the bound operands used as dim ids and symbols
I didn't mean this CL to be so large. It just happened this way, as one thing led to another.
PiperOrigin-RevId: 210204858
new VectorOrTensorType class that provides a common interface between vector
and tensor since a number of operations will be uniform across them (including
extract_element). Improve the LoadOp verifier.
I also updated the MLIR spec doc as well.
PiperOrigin-RevId: 209953189
FlatAffineConstraints, and MutableAffineMap.
All four classes introduced reside in lib/Analysis and are not meant to be
used in the IR (from lib/IR or lib/Parser/). They are all mutable, alloc'ed,
dealloc'ed - although with their fields pointing to immutable affine
expressions (AffineExpr *).
While on this, update simplifyMod to fold mod to a zero when possible.
PiperOrigin-RevId: 209618437
- Have the parser rewrite forward references to their resolved values at the
end of parsing.
- Implement verifier support for detecting malformed function attrs.
- Add efficient query for (in general, recursive) attributes to tell if they
contain a function.
As part of this, improve other general infrastructure:
- Implement support for verifying OperationStmt's in ml functions, refactoring
and generalizing support for operations in the verifier.
- Refactor location handling code in mlir-opt to have the non-error expecting
form of mlir-opt invocations to report error locations precisely.
- Fix parser to detect verifier failures and report them through errorReporter
instead of printing the error and crashing.
This regresses the location info for verifier errors in the parser that were
previously ascribed to the function. This will get resolved in future patches
by adding support for function attributes, which we can use to manage location
information.
PiperOrigin-RevId: 209600980
resolver support.
Still TODO are verifier support (to make sure you don't use an attribute for a
function in another module) and the TODO in ModuleParser::finalizeModule that I
will handle in the next patch.
PiperOrigin-RevId: 209361648
print floating point in a structured form that we know can round trip,
enumerate attributes in the visitor so we print affine mapping attributes
symbolically (the majority of the testcase updates).
We still have an issue where the hexadecimal floating point syntax is reparsed
as an integer, but that can evolve in subsequent patches.
PiperOrigin-RevId: 208828876
This patch passes the raw, unescaped value through to the rest of the stack. Partial escaping is a total pain to deal with, so we either need to implement escaping properly (ideally using a third party library like absl, I don't think LLVM has one that can handle the proper gamut of escape codes) or don't escape. I chose the latter for this patch.
PiperOrigin-RevId: 208608945
Prior to this CL, return statement had no explicit representation in MLIR. Now, it is represented as ReturnOp standard operation and is pretty printed according to the return statement syntax. This way statement walkers can process ML function return operands without making special case for them.
PiperOrigin-RevId: 208092424
- introduce affine integer sets into the IR
- parse and print affine integer sets (both inline or outlined) similar to
affine maps
- use integer set for IfStmt's conditional, and implement parsing of IfStmt's
conditional
- fixed an affine expr paren omission bug while one this.
TODO: parse/represent/print MLValue operands to affine integer set references.
PiperOrigin-RevId: 207779408
encapsulates an operation that is yet to be created. This is a patch towards
custom ops providing create methods that don't need to be templated, allowing
them to move out of line in the future.
PiperOrigin-RevId: 207725557
Unrelated minor change - remove OperationStmt::dropReferences(). Since MLFunction does not have cyclic operand references (it's an AST) destruction can be safely done w/o a special pass to drop references.
PiperOrigin-RevId: 207583024
- Implement a diagnostic hook in one of the paths in mlir-opt which
captures and reports the diagnostics nicely.
- Have the parser capture simple location information from the parser
indicating where each op came from in the source .mlir file.
- Add a verifyDominance() method to MLFuncVerifier to demo this, resolving b/112086163
- Add some PrettyStackTrace handlers to make crashes in the testsuite easier
to track down.
PiperOrigin-RevId: 207488548
- simplify operations with identity elements (multiply by 1, add with 0).
- simplify successive add/mul: fold constants, propagate constants to the
right.
- simplify floordiv and ceildiv when divisors are constants, and the LHS is a
multiply expression with RHS constant.
- fix an affine expression printing bug on paren emission.
- while on this, fix affine-map test cases file (memref's using layout maps
that were duplicates of existing ones should be emitted pointing to the
unique'd one).
PiperOrigin-RevId: 207046738