Previously when <addr> in "memory region <addr>" didn't
parse correctly, we'd print an error then also ask lldb-server
for a region containing LLDB_INVALID_ADDRESS.
(lldb) memory region not_an_address
error: invalid address argument "not_an_address"...
error: Server returned invalid range
Only send the command to lldb-server if the address
parsed correctly.
(lldb) memory region not_an_address
error: invalid address argument "not_an_address"...
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D87694
Register the `faulthandler` module so we can see what lldb tests are doing when they misbehave (e.g. run under a test runner that sets a timeout). This will print a stack trace for the following signals:
- `SIGSEGV`, `SIGFPE`, `SIGABRT`, `SIGBUS`, and `SIGILL` (via `faulthandler.enable()`)
- `SIGTERM` (via `faulthandler.register(SIGTERM)`) [This is what our test runners sends when it times out].
The only signal we currently handle is `SIGINT` (via `unittest2.signals.installHandler()`) so there should be no overlap added by this patch.
Because this import is not available until python3, and the `register()` method is not available on Windows, this is enabled defensively.
This should have absolutely no effect when tests are passing (or even normally failing), but can be observed by running this while ninja is running:
```
kill -s SIGTERM $(ps aux | grep dotest.py | head -1 | awk '{print $2}')
```
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D87637
Perform all error handling in ReadCode()
Add :help text describing “< path”, add extra line before Commands
Differential Revision: https://reviews.llvm.org/D87640
Since "generic type" has a precise meaning in some languages, reword the docstring of `CompilerType` to avoid ambiguity.
Differential Revision: https://reviews.llvm.org/D87633
Code was added that used llvm error checking to parse .debug_aranges, but the error check after parsing the DWARFDebugArangesSet was reversed and was causing no error to be returned with no valid address ranges being actually used. This meant we always would fall back onto creating out own address ranges by parsing the compile unit's ranges. This was causing problems for cases where the DW_TAG_compile_unit had a single address range by using a DW_AT_low_pc and DW_AT_high_pc attribute pair (not using a DW_AT_ranges attribute), but the .debug_aranges had correct split ranges. In this case we would end up using the single range for the compile unit that encompassed all of the ranges from the .debug_aranges section and would cause address resolving issues in LLDB where address lookups would fail for certain addresses.
Differential Revision: https://reviews.llvm.org/D87626
Make it possible to run the script command with a different language
than currently selected.
$ ./bin/lldb -l python
(lldb) script -l lua
>>> io.stdout:write("Hello, World!\n")
Hello, World!
When passing the language option and a raw command, you need to separate
the flag from the script code with --.
$ ./bin/lldb -l python
(lldb) script -l lua -- io.stdout:write("Hello, World!\n")
Hello, World!
Differential revision: https://reviews.llvm.org/D86996
qemu calls the "fp" and "lr" registers via their generic names
(x29/x30). This mismatch manifested itself as not being able to unwind
or display values of some local variables.
In MinGW world, UNIX like lib prefix is preferred for the libraries.
This patch adjusts CMake files to do that.
Differential Revision: https://reviews.llvm.org/D87517
On macOS Big Sur the class descriptor contains the NSKVONotifying_
prefix. This is covered by TestDataFormatterObjCKVO.
Differential revision: https://reviews.llvm.org/D87545
This patch adds a way to fetch breakpoint metadatas as a serialized
`Structured` Data format (JSON). This can be used by IDEs to update
their UI when a breakpoint is set or modified from the console.
rdar://11013798
Differential Revision: https://reviews.llvm.org/D87491
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
They are currently not being set correctly for the case of multi-config generators like XCode and VS. There's also a typo in one of the cmake files.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D87466
Extract a function for turning `eLaunchFlavorDefault` into a concreate `eLaunchFlavor` value.
This new function encapsulates the few compile time variables involved, and also prevents clang unused code diagnostics.
Differential Revision: https://reviews.llvm.org/D87327
This adds support for substituting std::pair instantiations with enabled
import-std-module.
With the fixes in parent revisions we can currently substitute a single pair
(however, a result that returns a second pair currently causes LLDB to crash
while importing the second template instantiation).
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D85141
The ASTImporter has an `Imported(From, To)` callback that notifies subclasses
that a declaration has been imported in some way. LLDB uses this in the
`CompleteTagDeclsScope` to see which records have been imported into the scratch
context. If the record was declared inside the expression, then the
`CompleteTagDeclsScope` will forcibly import the full definition of that record
to the scratch context so that the expression AST can safely be disposed later
(otherwise we might end up going back to the deleted AST to complete the
minimally imported record). The way this is implemented is that there is a list
of decls that need to be imported (`m_decls_to_complete`) and we keep completing
the declarations inside that list until the list is empty. Every `To` Decl we
get via the `Imported` callback will be added to the list of Decls to be
completed.
There are some situations where the ASTImporter will actually give us two
`Imported` calls with the same `To` Decl. One way where this happens is if the
ASTImporter decides to merge an imported definition into an already imported
one. Another way is that the ASTImporter just happens to get two calls to
`ASTImporter::Import` for the same Decl. This for example happens when importing
the DeclContext of a Decl requires importing the Decl itself, such as when
importing a RecordDecl that was declared inside a function.
The bug addressed in this patch is that when we end up getting two `Imported`
calls for the same `To` Decl, then we would crash in the
`CompleteTagDeclsScope`. That's because the first time we complete the Decl we
remove the Origin tracking information (that maps the Decl back to from where it
came from). The next time we try to complete the same `To` Decl the Origin
tracking information is gone and we hit the `to_context_md->getOrigin(decl).ctx
== m_src_ctx` assert (`getOrigin(decl).ctx` is a nullptr the second time as the
Origin was deleted).
This is actually a regression coming from D72495. Before D72495
`m_decls_to_complete` was actually a set so every declaration in there could
only be queued once to be completed. The set was changed to a vector to make the
iteration over it deterministic, but that also causes that we now potentially
end up trying to complete a Decl twice.
This patch essentially just reverts D72495 and makes the `CompleteTagDeclsScope`
use a SetVector for the list of declarations to be completed. The SetVector
should filter out the duplicates (as the original `set` did) and also ensure that
the completion order is deterministic. I actually couldn't find any way to cause
LLDB to reproduce this bug by merging declarations (this would require that we
for example declare two namespaces in a non-top-level expression which isn't
possible). But the bug reproduces very easily by just declaring a class in an
expression, so that's what the test is doing.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D85648
SemaSourceWithPriorities is a special SemaSource that wraps our normal LLDB
ExternalASTSource and the ASTReader (which is used for the C++ module loading).
It's only active when the `import-std-module` setting is turned on.
The `CompleteType` function there in `SemaSourceWithPriorities` is looping over
all ExternalASTSources and asks each to complete the type. However, that loop is
in another loop that keeps doing that until the type is complete. If that
function is ever called on a type that is a forward decl then that causes LLDB
to go into an infinite loop.
I remember I added that second loop and the comment because I thought I saw a
similar pattern in some other Clang code, but after some grepping I can't find
that code anywhere and it seems the rest of the code base only calls
CompleteType once (It would also be kinda silly to have calling it multiple
times). So it seems that's just a silly mistake.
The is implicitly tested by importing `std::pair`, but I also added a simpler
dedicated test that creates a dummy libc++ module with some forward declarations
and then imports them into the scratch AST context. At some point the
ASTImporter will check if one of the forward decls could be completed by the
ExternalASTSource, which will cause the `SemaSourceWithPriorities` to go into an
infinite loop once it receives the `CompleteType` call.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D87289
This patch removes register set definitions and other redundant code from
NativeRegisterContextLinux/RegisterContextPOSIX*_arm. Register sets are now
moved under RegisterInfosPOSIX_arm which now uses RegisterInfoAndSetInterface.
This is similar to what we earlier did for AArch64.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D86962
targetHasSVE helper function was added to test for availability of SVE support
by connected platform. We now intend to use this function in other testcases
and I am moving it to a generic location in lldbtest.py to allow usage by
other upcoming testcases.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D86872
TestCPP11EnumTypes is one of the most expensive tests on my system and takes
around 35 seconds to run. A relatively large amount of that time is actually
doing CPU intensive work it seems (and not waiting on timeouts like other
slow tests).
The main issue is that this test repeatedly compiles the same source files
with different compiler defines. The test is also including standard library
headers, so it will also build all system modules with the gmodules debug
info variant. This leads to the problem that this test ends up compiling all
system Clang modules 8 times (one for each subtest with a unique define). As
the system modules are quite large, this causes that this test spends most
of its runtime just recompiling all system modules on macOS.
There is also the small issue that this test is starting and start-stopping
the test process a few hundred times.
This rewrites the test to instead just use a macro to instantiate all the
enum types in a single source and uses global variables to test the values
(which means there is no more need to continue/stop or even start a process).
I kept running all the debug info variants (event though it doesn't seem really
relevant) to keep this as NFC as possible.
This reduced the test runtime by around 1.5 seconds on my system (or in relative
numbers, the runtime of this test decreases by 95%).
This is one of the most expensive tests and runs for nearly half a minute on
my machine. Beside this test just doing a lot of work by iterating 15k times on
one ValueObject (which seems to be the point), it also runs this for every
debug info variant which doesn't seem relevant to just iterating ValueObject.
This marks it as no_debug_info_test to only run one debug info variation
and cut down the runtime to around 7 seconds on my machine.
This reverts commit f369d51896. The bug this
fixes was already fixed by 1c5a0cb1c3 with the
same approach and this commit is now just giving the variable a second fallback
value.
The tests are unsupported on linux, but they assert in
Thread::GetStopDescriptionRaw() because of empty stop reason
description. And it is empty because
InstrumentationRuntimeTSan::NotifyBreakpointHit() fails
to get report from InstrumentationRuntimeTSan::RetrieveReportData(),
which is possibly(?) the reason why this is unsupported on linux.
Add a dummy stop reason description for this case, which changes
the test result from failing to unsupported.
Caused by D86662. The fix is only checking some fields when the expect_debug_info_size flag is true. For some reason this was not failing on a local linux machine.
This updates the errors reported by expect()
to something like:
```
Ran command:
"help"
Got output:
Debugger commands:
<...>
Expecting start string: "Debugger commands:" (was found)
Expecting end string: "foo" (was not found)
```
(see added tests for more examples)
This shows the user exactly what was run,
what checks passed and which failed. Along with
whether that check was supposed to pass.
(including what regex patterns matched)
These lines are also output to the test
trace file, whether the test passes or not.
Note that expect() will still fail at the first failed
check, in line with previous behaviour.
Also I have flipped the wording of the assert
message functions (.*_MSG) to describe failures
not successes. This makes more sense as they are
only shown on assert failures.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D86792
Previously, before loading the REPL language-specific init file, lldb
checked the selected target language in which case it returned an unknown
language type with the REPL target.
Instead, the patch calls `Language::GetLanguagesSupportingREPLs` and
look for the first element of that set. In case lldb was not configured
with a REPL language, then, it will just stop sourcing the REPL init
file and fallback to the original logic (continuing with the default
init file).
rdar://65836048
Differential Revision: https://reviews.llvm.org/D87076
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
`image dump symtab` seems to output the symbols in whatever order they appear in
the DenseMap that is used to filter out symbols with non-unique addresses. As
DenseMap is a hash map this order can change at any time so the output of this
command is pretty unstable. This also causes the `Breakpad/symtab.test` to fail
with enabled reverse iteration (which reverses the DenseMap order to find issues
like this).
This patch makes the DenseMap a std::vector and uses a separate DenseSet to do
the address filtering. The output order is now dependent on the order in which
the symbols are read (which should be deterministic). It might also avoid a bit
of work as all the work for creating the Symbol constructor parameters is only
done when we can actually emplace a new Symbol.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D87036
The test only checks the exit code that the debug server sends back, but
not the following explanation which is different for debugserver and lldb-server.
If our process terminates due to an unhandled signal, we are supposed to get the
signal code via WTERMSIG. However, we instead try to get the exit status via
WEXITSTATUS which just ends up always calculating signal code 0 (at least on the
macOS implementation where it just shifts the signal code bits away and we're
left with only 0 bits).
The exit status calculation on the LLDB side also seems a bit off as it claims
an exit status that is just the signal code (instead of for example 128 + signal
code), but that will be another patch.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D86336
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
When compiling an Objective-C++ file, __has_feature(cxx_exceptions) will
return true with -fno-exceptions but without -fno-objc-exceptions. This
was causing LLVM_ENABLE_EXCEPTIONS to be defined for a subset of files.
This is currently causing msan warnings in the API tests when run under msan, e.g. `commands/gui/basic/TestGuiBasic.py`.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D86825