The implementation of shadow call stack on aarch64 is quite different to
the implementation on x86_64. Instead of reserving a segment register for
the shadow call stack, we reserve the platform register, x18. Any function
that spills lr to sp also spills it to the shadow call stack, a pointer to
which is stored in x18.
Differential Revision: https://reviews.llvm.org/D45239
llvm-svn: 329236
Re-commit of r322200: The testcase shouldn't hit machineverifiers
anymore with r322917 in place.
Large callframes (calls with several hundreds or thousands or
parameters) could lead to situations in which the emergency spillslot is
out of range to be addressed relative to the stack pointer.
This commit forces the use of a frame pointer in the presence of large
callframes.
This commit does several things:
- Compute max callframe size at the end of instruction selection.
- Add mirFileLoaded target callback. Use it to compute the max callframe size
after loading a .mir file when the size wasn't specified in the file.
- Let TargetFrameLowering::hasFP() return true if there exists a
callframe > 255 bytes.
- Always place the emergency spillslot close to FP if we have a frame
pointer.
- Note that `useFPForScavengingIndex()` would previously return false
when a base pointer was available leading to the emergency spillslot
getting allocated late (that's the whole effect of this callback).
Which made no sense to me so I took this case out: Even though the
emergency spillslot is technically not referenced by FP in this case
we still want it allocated early.
Differential Revision: https://reviews.llvm.org/D40876
llvm-svn: 322919
Revert for now as the testcase is hitting a pre-existing verifier error
that manifest as a failure when expensive checks are enabled (or
-verify-machineinstrs) is used.
This reverts commit r322200.
llvm-svn: 322231
Large callframes (calls with several hundreds or thousands or
parameters) could lead to situations in which the emergency spillslot is
out of range to be addressed relative to the stack pointer.
This commit forces the use of a frame pointer in the presence of large
callframes.
This commit does several things:
- Compute max callframe size at the end of instruction selection.
- Add mirFileLoaded target callback. Use it to compute the max callframe size
after loading a .mir file when the size wasn't specified in the file.
- Let TargetFrameLowering::hasFP() return true if there exists a
callframe > 255 bytes.
- Always place the emergency spillslot close to FP if we have a frame
pointer.
- Note that `useFPForScavengingIndex()` would previously return false
when a base pointer was available leading to the emergency spillslot
getting allocated late (that's the whole effect of this callback).
Which made no sense to me so I took this case out: Even though the
emergency spillslot is technically not referenced by FP in this case
we still want it allocated early.
Differential Revision: https://reviews.llvm.org/D40876
llvm-svn: 322200
The IRTranslator cannot generate these instructions at the moment so there's no
issue with not having implemented ISel for them yet. D40092 will add
G_ATOMIC_CMPXCHG_WITH_SUCCESS and G_ATOMICRMW_* to the IRTranslator and a
further patch will add support for lowering G_ATOMIC_CMPXCHG_WITH_SUCCESS into
G_ATOMIC_CMPXCHG with an external success check via the `Lower` action.
The separation of G_ATOMIC_CMPXCHG_WITH_SUCCESS and G_ATOMIC_CMPXCHG is
to import SelectionDAG rules while still supporting targets that prefer to
custom lower the original LLVM-IR-like operation.
llvm-svn: 319216
This reverts commit r310425, thus reapplying r310335 with a fix for link
issue of the AArch64 unittests on Linux bots when BUILD_SHARED_LIBS is ON.
Original commit message:
[GlobalISel] Remove the GISelAccessor API.
Its sole purpose was to avoid spreading around ifdefs related to
building global-isel. Since r309990, GlobalISel is not optional anymore,
thus, we can get rid of this mechanism all together.
NFC.
----
The fix for the link issue consists in adding the GlobalISel library in
the list of dependencies for the AArch64 unittests. This dependency
comes from the use of AArch64Subtarget that needs to know how
to destruct the GISel related APIs when being detroyed.
Thanks to Bill Seurer and Ahmed Bougacha for helping me reproducing and
understand the problem.
llvm-svn: 310969
This reverts commit r310115.
It causes a linker failure for the one of the unittests of AArch64 on one
of the linux bot:
http://lab.llvm.org:8011/builders/clang-ppc64le-linux-multistage/builds/3429
: && /home/fedora/gcc/install/gcc-7.1.0/bin/g++ -fPIC
-fvisibility-inlines-hidden -Werror=date-time -std=c++11 -Wall -W
-Wno-unused-parameter -Wwrite-strings -Wcast-qual
-Wno-missing-field-initializers -pedantic -Wno-long-long
-Wno-maybe-uninitialized -Wdelete-non-virtual-dtor -Wno-comment
-ffunction-sections -fdata-sections -O2
-L/home/fedora/gcc/install/gcc-7.1.0/lib64 -Wl,-allow-shlib-undefined
-Wl,-O3 -Wl,--gc-sections
unittests/Target/AArch64/CMakeFiles/AArch64Tests.dir/InstSizes.cpp.o -o
unittests/Target/AArch64/AArch64Tests
lib/libLLVMAArch64CodeGen.so.6.0.0svn lib/libLLVMAArch64Desc.so.6.0.0svn
lib/libLLVMAArch64Info.so.6.0.0svn lib/libLLVMCodeGen.so.6.0.0svn
lib/libLLVMCore.so.6.0.0svn lib/libLLVMMC.so.6.0.0svn
lib/libLLVMMIRParser.so.6.0.0svn lib/libLLVMSelectionDAG.so.6.0.0svn
lib/libLLVMTarget.so.6.0.0svn lib/libLLVMSupport.so.6.0.0svn -lpthread
lib/libgtest_main.so.6.0.0svn lib/libgtest.so.6.0.0svn -lpthread
-Wl,-rpath,/home/buildbots/ppc64le-clang-multistage-test/clang-ppc64le-multistage/stage1/lib
&& :
unittests/Target/AArch64/CMakeFiles/AArch64Tests.dir/InstSizes.cpp.o:(.toc+0x0):
undefined reference to `vtable for llvm::LegalizerInfo'
unittests/Target/AArch64/CMakeFiles/AArch64Tests.dir/InstSizes.cpp.o:(.toc+0x8):
undefined reference to `vtable for llvm::RegisterBankInfo'
The particularity of this bot is that it is built with
BUILD_SHARED_LIBS=ON
However, I was not able to reproduce the problem so far.
Reverting to unblock the bot.
llvm-svn: 310425
Its sole purpose was to avoid spreading around ifdefs related to
building global-isel. Since r309990, GlobalISel is not optional anymore,
thus, we can get rid of this mechanism all together.
NFC.
llvm-svn: 310115
With this change, the GlobalISel library gets always built. In
particular, this is not possible to opt GlobalISel out of the build
using the LLVM_BUILD_GLOBAL_ISEL variable any more.
llvm-svn: 309990
Summary:
This change gives a 0.25% speedup on execution time, a 0.82% improvement
in benchmark scores and a 0.20% increase in binary size on a Cortex-A53.
These numbers are the geomean results on a wide range of benchmarks from
the test-suite and a range of proprietary suites.
Reviewers: t.p.northover, aadg, silviu.baranga, mcrosier, rengolin
Reviewed By: rengolin
Subscribers: grimar, davide, aemerson, rengolin, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D35568
llvm-svn: 309494
Summary:
This change gives a 0.89% speed on execution time, a 0.94% improvement
in benchmark scores and a 0.62% increase in binary size on a Cortex-A57.
These numbers are the geomean results on a wide range of benchmarks from
the test-suite, SPEC2000, SPEC2006 and a range of proprietary suites.
The software optimization guide for the Cortex-A57 recommends 16 byte
branch alignment.
Reviewers: t.p.northover, mcrosier, javed.absar, kristof.beyls, sbaranga
Reviewed By: kristof.beyls
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D34954
llvm-svn: 307389
Summary:
This change gives a 0.34% speed on execution time, a 0.61% improvement
in benchmark scores and a 0.57% increase in binary size on a Cortex-A72.
These numbers are the geomean results on a wide range of benchmarks from
the test-suite, SPEC2000, SPEC2006 and a range of proprietary suites.
The software optimization guide for the Cortex-A72 recommends 16 byte
branch alignment.
Reviewers: t.p.northover, kristof.beyls, rengolin, sbaranga, mcrosier, javed.absar
Reviewed By: kristof.beyls
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D34961
llvm-svn: 307380
Summary:
This causes them to be re-computed more often than necessary but resolves
objections that were raised post-commit on r301750.
Reviewers: qcolombet, ab, t.p.northover, rovka, kristof.beyls
Reviewed By: qcolombet
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32861
llvm-svn: 303418
ARM Neon has native support for half-sized vector registers (64 bits). This
is beneficial for example for 2D and 3D graphics. This patch adds the option
to lower MinVecRegSize from 128 via a TTI in the SLP Vectorizer.
*** Performance Analysis
This change was motivated by some internal benchmarks but it is also
beneficial on SPEC and the LLVM testsuite.
The results are with -O3 and PGO. A negative percentage is an improvement.
The testsuite was run with a sample size of 4.
** SPEC
* CFP2006/482.sphinx3 -3.34%
A pretty hot loop is SLP vectorized resulting in nice instruction reduction.
This used to be a +22% regression before rL299482.
* CFP2000/177.mesa -3.34%
* CINT2000/256.bzip2 +6.97%
My current plan is to extend the fix in rL299482 to i16 which brings the
regression down to +2.5%. There are also other problems with the codegen in
this loop so there is further room for improvement.
** LLVM testsuite
* SingleSource/Benchmarks/Misc/ReedSolomon -10.75%
There are multiple small SLP vectorizations outside the hot code. It's a bit
surprising that it adds up to 10%. Some of this may be code-layout noise.
* MultiSource/Benchmarks/VersaBench/beamformer/beamformer -8.40%
The opt-viewer screenshot can be seen at F3218284. We start at a colder store
but the tree leads us into the hottest loop.
* MultiSource/Applications/lambda-0.1.3/lambda -2.68%
* MultiSource/Benchmarks/Bullet/bullet -2.18%
This is using 3D vectors.
* SingleSource/Benchmarks/Shootout-C++/Shootout-C++-lists +6.67%
Noise, binary is unchanged.
* MultiSource/Benchmarks/Ptrdist/anagram/anagram +4.90%
There is an additional SLP in the cold code. The test runs for ~1sec and
prints out over 2000 lines. This is most likely noise.
* MultiSource/Applications/aha/aha +1.63%
* MultiSource/Applications/JM/lencod/lencod +1.41%
* SingleSource/Benchmarks/Misc/richards_benchmark +1.15%
Differential Revision: https://reviews.llvm.org/D31965
llvm-svn: 303116
Summary:
Predicate<> now has a field to indicate how often it must be recomputed.
Currently, there are two frequencies, per-module (RecomputePerFunction==0)
and per-function (RecomputePerFunction==1). Per-function predicates are
currently recomputed more frequently than necessary since the only predicate
in this category is cheap to test. Per-module predicates are now computed in
getSubtargetImpl() while per-function predicates are computed in selectImpl().
Tablegen now manages the PredicateBitset internally. It should only be
necessary to add the required includes.
Also fixed a problem revealed by the test case where
constrainSelectedInstRegOperands() would attempt to tie operands that
BuildMI had already tied.
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32491
llvm-svn: 301750
It's basically a terrible idea anyway but objc_msgSend gets emitted like that.
We can decide on a better way to deal with it in the unlikely event that anyone
actually uses it.
llvm-svn: 300474
It's almost certainly not a good idea to actually use it in most cases (there's
a pretty large code size overhead on AArch64), but we can't do those
experiments until it's supported.
llvm-svn: 300462
This mode is just like -mcmodel=small except that it moves the
thread pointer from TPIDR_EL0 to TPIDR_EL1.
Patch by Roland McGrath.
Differential Revision: https://reviews.llvm.org/D31624
llvm-svn: 299462
Broadcom Vulcan is now Cavium ThunderX2T99.
LLVM Bugzilla: http://bugs.llvm.org/show_bug.cgi?id=32113
Minor fixes for the alignments of loops and functions for
ThunderX T81/T83/T88 (better performance).
Patch was tested with SpecCPU2006.
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D30510
llvm-svn: 297190
This set of patches adds support for Cavium ThunderX ARM64 processors:
* ThunderX
* ThunderX T81
* ThunderX T83
* ThunderX T88
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D28891
llvm-svn: 295475
The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.
The only functional change is the name of a couple of command-line options.
llvm-svn: 284287
Many high-performance processors have a dedicated branch predictor for
indirect branches, commonly used with jump tables. As sophisticated as such
branch predictors are, they tend to have well defined limits beyond which
their effectiveness is hampered or even nullified. One such limit is the
number of possible destinations for a given indirect branches that such
branch predictors can handle.
This patch considers a limit that a target may set to the number of
destination addresses in a jump table.
Patch by: Evandro Menezes <e.menezes@samsung.com>, Aditya Kumar
<aditya.k7@samsung.com>, Sebastian Pop <s.pop@samsung.com>.
Differential revision: https://reviews.llvm.org/D21940
llvm-svn: 282412
This adds the actual MachineLegalizeHelper to do the work and a trivial pass
wrapper that legalizes all instructions in a MachineFunction. Currently the
only transformation supported is splitting up a vector G_ADD into one acting on
smaller vectors.
llvm-svn: 276461
TargetSubtargetInfo::overrideSchedPolicy takes two MachineInstr*
arguments (begin and end) that invite implicit conversions from
MachineInstrBundleIterator. One option would be to change their type to
an iterator, but since they don't seem to have been used since the API
was added in 2010, I'm deleting the dead code.
llvm-svn: 274304
Summary:
Code generation for Cortex-A72/Cortex-A73 was accidentally changed
by r271555, which was a NFCI. The isCortexA57() predicate was not true
for Cortex-A72/Cortex-A73 before r271555 (since it was checking the CPU
string). Because Cortex-A72/Cortex-A73 inherit all features from Cortex-A57,
all decisions previously guarded by isCortexA57() are now taken.
This change restores the behaviour before r271555 by adding separate
ProcA72/ProcA73, which have the required features to preserve code
generation.
Reviewers: kristof.beyls, aadg, mcrosier, rengolin
Subscribers: mcrosier, llvm-commits, aemerson, t.p.northover, MatzeB, rengolin
Differential Revision: http://reviews.llvm.org/D21182
llvm-svn: 273277