This reverts commit r208934.
The patch depends on aliases to GEPs with non zero offsets. That is not
supported and fairly broken.
The good news is that GlobalAlias is being redesigned and will have support
for offsets, so this patch should be a nice match for it.
llvm-svn: 208978
Add some Windows on ARM specific library calls. These are provided by msvcrt,
and can be used to perform integer to floating-point conversions (and
vice-versa) mirroring similar functions in the RTABI.
llvm-svn: 208949
This commit implements two command line switches -global-merge-on-external
and -global-merge-aligned, and both of them are false by default, so this
optimization is disabled by default for all targets.
For ARM64, some back-end behaviors need to be tuned to get this optimization
further enabled.
llvm-svn: 208934
If the function has the landingpad instruction, then the
handlerdata should be emitted even if the function has
nouwnind attribute. Otherwise, following code will not
work:
void test1() noexcept {
try {
throw_exception();
} catch (...) {
log_unexpected_exception();
}
}
Since the cantunwind was incorrectly emitted and the
LSDA is not available.
llvm-svn: 208791
The commit r208166 will cause some regression on ARM EHABI.
This fix has been committed in r208715, and an assertion failure
test case has been committed in r208770.
This commit further extends the unittest so that the actual
value in the handlerdata will be checked.
llvm-svn: 208790
This commit was already commited as revision rL208689 and discussd in
phabricator revision D3704.
But the test file was crashing on OS X and windows.
I fixed the test file in the same way as in rL208340.
llvm-svn: 208711
The current patterns for REV16 misses mostn __builtin_bswap16() due to
legalization promoting the operands to from load/stores toi32s and then
truncing/extending them. This patch adds new patterns that catch the resultant
DAGs and codegens them to rev16 instructions. Tests included.
rdar://15353652
llvm-svn: 208620
This patch adds support to ARM for custom lowering of the
llvm.{u|s}add.with.overflow.i32 intrinsics for i32/i64. This is particularly useful
for handling idiomatic saturating math functions as generated by
InstCombineCompare.
Test cases included.
rdar://14853450
llvm-svn: 208435
When using the ARM AAPCS, HFAs (Homogeneous Floating-point Aggregates) must
be passed in a block of consecutive floating-point registers, or on the stack.
This means that unused floating-point registers cannot be back-filled with
part of an HFA, however this can currently happen. This patch, along with the
corresponding clang patch (http://reviews.llvm.org/D3083) prevents this.
llvm-svn: 208413
Handle lowering of global addresses for PIC mode compilation on Windows. Always
use the movw/movt load to load the address as Windows on ARM requires ARMv7+ and
is a pure Thumb environment.
llvm-svn: 208385
When building on Windows, the default target is Windows. Windows on ARM does
not support ARM mode compilation, resulting in test failures. Simply specify a
triple to ensure that we are testing the correct behaviour.
llvm-svn: 208340
The ARM::BLX instruction is an ARM mode instruction. The Windows on ARM target
is limited to Thumb instructions. Correctly use the thumb mode tBLXr
instruction. This would manifest as an errant write into the object file as the
instruction is 4-bytes in length rather than 2. The result would be a corrupted
object file that would eventually result in an executable that would crash at
runtime.
llvm-svn: 208152
remove it from the list of unspilled registers. Otherwise the following
attempt to keep the stack aligned by picking an extra GPR register to
spill will not work as it picks up r11.
llvm-svn: 208129
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
llvm-svn: 208104
Windows on ARM does not conform to AEABI. However, memset would be emitted
using the AEABI signature, resulting in inverted parameters. Handle this
special case appropriately.
llvm-svn: 207943
This introduces the stack lowering emission of the stack probe function for
Windows on ARM. The stack on Windows on ARM is a dynamically paged stack where
any page allocation which crosses a page boundary of the following guard page
will cause a page fault. This page fault must be handled by the kernel to
ensure that the page is faulted in. If this does not occur and a write access
any memory beyond that, the page fault will go unserviced, resulting in an
abnormal program termination.
The watermark for the stack probe appears to be at 4080 bytes (for
accommodating the stack guard canaries and stack alignment) when SSP is
enabled. Otherwise, the stack probe is emitted on the page size boundary of
4096 bytes.
llvm-svn: 207615
IMAGE_REL_ARM_MOV32T relocations require that the movw/movt pair-wise
relocation is not split up and reordered. When expanding the mov32imm
pseudo-instruction, create a bundle if the machine operand is referencing an
address. This helps ensure that the relocatable address load is not reordered
by subsequent passes.
Unfortunately, this only partially handles the case as the Constant Island Pass
occurs after the instructions are unbundled and does not properly handle
bundles. That is a more fundamental issue with the pass itself and beyond the
scope of this change.
llvm-svn: 207608
This intrinsic is no longer needed with the new @llvm.arm.hint(i32) intrinsic
which provides a generic, extensible manner for adding hint instructions. This
functionality can now be represented as @llvm.arm.hint(i32 5).
llvm-svn: 207246
Introduce the llvm.arm.hint(i32) intrinsic that can be used to inject hints into
the instruction stream. This is particularly useful for generating IR from a
compiler where the user may inject an intrinsic (e.g. __yield). These are then
pattern substituted into the correct instruction which already existed.
llvm-svn: 207242
The point of these calls is to allow Thumb-1 code to make use of the VFP unit
to perform its operations. This is not desirable with -msoft-float, since most
of the reasons you'd want that apply equally to the runtime library.
rdar://problem/13766161
llvm-svn: 206874
handles Intrinsic::trap if TargetOptions::TrapFuncName is set.
This fixes a bug in which the trap function was not taken into consideration
when a program was compiled without optimization (at -O0).
<rdar://problem/16291933>
llvm-svn: 206323
Previously, BranchProbabilityInfo::calcLoopBranchHeuristics would determine the weights of basic blocks inside loops even when it didn't have enough information to estimate the branch probabilities correctly. This patch fixes the function to exit early if it doesn't see any exit edges or back edges and let the later heuristics determine the weights.
This fixes PR18705 and <rdar://problem/15991090>.
Differential Revision: http://reviews.llvm.org/D3363
llvm-svn: 206194
The current memory-instruction optimization logic in CGP, which sinks parts of
the address computation that can be adsorbed by the addressing mode, does this
by explicitly converting the relevant part of the address computation into
IR-level integer operations (making use of ptrtoint and inttoptr). For most
targets this is currently not a problem, but for targets wishing to make use of
IR-level aliasing analysis during CodeGen, the use of ptrtoint/inttoptr is a
problem for two reasons:
1. BasicAA becomes less powerful in the face of the ptrtoint/inttoptr
2. In cases where type-punning was used, and BasicAA was used
to override TBAA, BasicAA may no longer do so. (this had forced us to disable
all use of TBAA in CodeGen; something which we can now enable again)
This (use of GEPs instead of ptrtoint/inttoptr) is not currently enabled by
default (except for those targets that use AA during CodeGen), and so aside
from some PowerPC subtargets and SystemZ, there should be no change in
behavior. We may be able to switch completely away from the ptrtoint/inttoptr
sinking on all targets, but further testing is required.
I've doubled-up on a number of existing tests that are sensitive to the
address sinking behavior (including some store-merging tests that are
sensitive to the order of the resulting ADD operations at the SDAG level).
llvm-svn: 206092
This removes the -segmented-stacks command line flag in favor of a
per-function "split-stack" attribute.
Patch by Luqman Aden and Alex Crichton!
llvm-svn: 205997
More updating of tests to be explicit about the target triple rather than
relying on the default target triple supporting ARM mode.
Indicate to lit that object emission is not yet available for Windows on ARM.
llvm-svn: 205545
This changes the tests that were targeting ARM EABI to explicitly specify the
environment rather than relying on the default. This breaks with the new
Windows on ARM support when running the tests on Windows where the default
environment is no longer EABI.
Take the opportunity to avoid a pointless redirect (helps when trying to debug
with providing a command line invocation which can be copy and pasted) and
removing a few greps in favour of FileCheck.
llvm-svn: 205541
Implementing this via ComputeMaskedBits has two advantages:
+ It actually works. DAGISel doesn't deal with the chains properly
in the previous pattern-based solution, so they never trigger.
+ The information can be used in other DAG combines, as well as the
trivial "get rid of truncs". For example if the trunc is in a
different basic block.
rdar://problem/16227836
llvm-svn: 205540
The terminal barrier of a cmpxchg expansion will be either Acquire or
SequentiallyConsistent. In either case it can be skipped if the
operation has Monotonic requirements on failure.
rdar://problem/15996804
llvm-svn: 205535
The previous situation where ATOMIC_LOAD_WHATEVER nodes were expanded
at MachineInstr emission time had grown to be extremely large and
involved, to account for the subtly different code needed for the
various flavours (8/16/32/64 bit, cmpxchg/add/minmax).
Moving this transformation into the IR clears up the code
substantially, and makes future optimisations much easier:
1. an atomicrmw followed by using the *new* value can be more
efficient. As an IR pass, simple CSE could handle this
efficiently.
2. Making use of cmpxchg success/failure orderings only has to be done
in one (simpler) place.
3. The common "cmpxchg; did we store?" idiom can be exposed to
optimisation.
I intend to gradually improve this situation within the ARM backend
and make sure there are no hidden issues before moving the code out
into CodeGen to be shared with (at least ARM64/AArch64, though I think
PPC & Mips could benefit too).
llvm-svn: 205525
add operation since extract_vector_elt can perform an extend operation. Get the input lane
type from the vector on which we're performing the vpaddl operation on and extend or
truncate it to the output type of the original add node.
llvm-svn: 205523