Commit Graph

247 Commits

Author SHA1 Message Date
Petar Jovanovic e2bfcd6394 Correct dwarf unwind information in function epilogue
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.

The second part is platform independent and ensures that:

* CFI instructions do not affect code generation (they are not counted as
  instructions when tail duplicating or tail merging)
* Unwind information remains correct when a function is modified by
  different passes. This is done in a late pass by analyzing information
  about cfa offset and cfa register in BBs and inserting additional CFI
  directives where necessary.

Added CFIInstrInserter pass:

* analyzes each basic block to determine cfa offset and register are valid
  at its entry and exit
* verifies that outgoing cfa offset and register of predecessor blocks match
  incoming values of their successors
* inserts additional CFI directives at basic block beginning to correct the
  rule for calculating CFA

Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.

Patch by Violeta Vukobrat.

Differential Revision: https://reviews.llvm.org/D42848

llvm-svn: 330706
2018-04-24 10:32:08 +00:00
Craig Topper 2fa1436206 [IR][CodeGen] Remove dependency on EVT from IR/Function.cpp. Move EVT to CodeGen layer.
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.

The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.

Differential Revision: https://reviews.llvm.org/D45017

llvm-svn: 328806
2018-03-29 17:21:10 +00:00
Chandler Carruth c58f2166ab Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre..
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.

The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.

However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.

On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.

This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886

We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
  __llvm_external_retpoline_r11
```
or on 32-bit:
```
  __llvm_external_retpoline_eax
  __llvm_external_retpoline_ecx
  __llvm_external_retpoline_edx
  __llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.

There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.

The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.

For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.

When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.

When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.

However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.

We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.

This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.

Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer

Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D41723

llvm-svn: 323155
2018-01-22 22:05:25 +00:00
Marina Yatsina 0bf841ac2a Separate LoopTraversal, ReachingDefAnalysis and BreakFalseDeps into their own files.
This is the one of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869
Most of the patches are intended at refactoring the existent code.

Additional relevant reviews:
https://reviews.llvm.org/D40330
https://reviews.llvm.org/D40331
https://reviews.llvm.org/D40332
https://reviews.llvm.org/D40334

Differential Revision: https://reviews.llvm.org/D40333

Change-Id: Ie5f8eb34d98cfdfae23a3072eb69b5794f0e2d56
llvm-svn: 323095
2018-01-22 10:06:50 +00:00
Marina Yatsina 3d8efa4f0c Rename ExecutionDepsFix files to ExecutionDomainFix
This is the one of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869
Most of the patches are intended at refactoring the existent code.

Additional relevant reviews:
https://reviews.llvm.org/D40330
https://reviews.llvm.org/D40331
https://reviews.llvm.org/D40333
https://reviews.llvm.org/D40334

Differential Revision: https://reviews.llvm.org/D40332

Change-Id: I6a048cca7fdafbfc42fb1bac94343e483befded8
llvm-svn: 323094
2018-01-22 10:06:33 +00:00
Matthias Braun ef95969e5b LiveStacks: Rename LiveStack.{h|cpp} to LiveStacks.{h|cpp}; NFC
Filenames should match the name of the class they contain.

llvm-svn: 321037
2017-12-18 23:19:44 +00:00
Matthias Braun f842297d50 Rename LiveIntervalAnalysis.h to LiveIntervals.h
Headers/Implementation files should be named after the class they
declare/define.

Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in
favor of `class LiveIntarvals;`

llvm-svn: 320546
2017-12-13 02:51:04 +00:00
Francis Visoiu Mistrih aa739695a4 [CodeGen] Separate MachineOperand implementation from MachineInstr
Move the implementation to its own file.

Differential Revision: https://reviews.llvm.org/D40419

llvm-svn: 319194
2017-11-28 17:58:43 +00:00
Hans Wennborg e1ecd61b98 Rename CountingFunctionInserter and use for both mcount and cygprofile calls, before and after inlining
Clang implements the -finstrument-functions flag inherited from GCC, which
inserts calls to __cyg_profile_func_{enter,exit} on function entry and exit.

This is useful for getting a trace of how the functions in a program are
executed. Normally, the calls remain even if a function is inlined into another
function, but it is useful to be able to turn this off for users who are
interested in a lower-level trace, i.e. one that reflects what functions are
called post-inlining. (We use this to generate link order files for Chromium.)

LLVM already has a pass for inserting similar instrumentation calls to
mcount(), which it does after inlining. This patch renames and extends that
pass to handle calls both to mcount and the cygprofile functions, before and/or
after inlining as controlled by function attributes.

Differential Revision: https://reviews.llvm.org/D39287

llvm-svn: 318195
2017-11-14 21:09:45 +00:00
Reid Kleckner 7adb2fdbba Revert "Correct dwarf unwind information in function epilogue for X86"
This reverts r317579, originally committed as r317100.

There is a design issue with marking CFI instructions duplicatable. Not
all targets support the CFIInstrInserter pass, and targets like Darwin
can't cope with duplicated prologue setup CFI instructions. The compact
unwind info emission fails.

When the following code is compiled for arm64 on Mac at -O3, the CFI
instructions end up getting tail duplicated, which causes compact unwind
info emission to fail:
  int a, c, d, e, f, g, h, i, j, k, l, m;
  void n(int o, int *b) {
    if (g)
      f = 0;
    for (; f < o; f++) {
      m = a;
      if (l > j * k > i)
        j = i = k = d;
      h = b[c] - e;
    }
  }

We get assembly that looks like this:
; BB#1:                                 ; %if.then
Lloh3:
	adrp	x9, _f@GOTPAGE
Lloh4:
	ldr	x9, [x9, _f@GOTPAGEOFF]
	mov	 w8, wzr
Lloh5:
	str		wzr, [x9]
	stp	x20, x19, [sp, #-16]!   ; 8-byte Folded Spill
	.cfi_def_cfa_offset 16
	.cfi_offset w19, -8
	.cfi_offset w20, -16
	cmp		w8, w0
	b.lt	LBB0_3
	b	LBB0_7
LBB0_2:                                 ; %entry.if.end_crit_edge
Lloh6:
	adrp	x8, _f@GOTPAGE
Lloh7:
	ldr	x8, [x8, _f@GOTPAGEOFF]
Lloh8:
	ldr		w8, [x8]
	stp	x20, x19, [sp, #-16]!   ; 8-byte Folded Spill
	.cfi_def_cfa_offset 16
	.cfi_offset w19, -8
	.cfi_offset w20, -16
	cmp		w8, w0
	b.ge	LBB0_7
LBB0_3:                                 ; %for.body.lr.ph

Note the multiple .cfi_def* directives. Compact unwind info emission
can't handle that.

llvm-svn: 317726
2017-11-08 21:31:14 +00:00
Petar Jovanovic e2a585dddc Reland "Correct dwarf unwind information in function epilogue for X86"
Reland r317100 with minor fix regarding ComputeCommonTailLength function in
BranchFolding.cpp. Skipping top CFI instructions block needs to executed on
several more return points in ComputeCommonTailLength().

Original r317100 message:

"Correct dwarf unwind information in function epilogue for X86"

This patch aims to provide correct dwarf unwind information in function
epilogue for X86.

It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.

The second part is platform independent and ensures that:

- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
  different passes. This is done in a late pass by analyzing information
  about cfa offset and cfa register in BBs and inserting additional CFI
  directives where necessary.

Changed CFI instructions so that they:

- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal

Added CFIInstrInserter pass:

- analyzes each basic block to determine cfa offset and register valid at
  its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
  incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
  rule for calculating CFA

Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.

CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.

Patch by Violeta Vukobrat.

llvm-svn: 317579
2017-11-07 14:40:27 +00:00
Clement Courbet 063bed9baf re-land [ExpandMemCmp] Split ExpandMemCmp from CodeGen into its own pass."
Fix undefined references: ExpandMemCmp belongs to CodeGen/, not Scalar/.

llvm-svn: 317318
2017-11-03 12:12:27 +00:00
Puyan Lotfi a521c4ac55 mir-canon: First commit.
mir-canon (MIRCanonicalizerPass) is a pass designed to reorder instructions and
rename operands so that two similar programs will diff more cleanly after being
run through mir-canon than they would otherwise. This project is still a work
in progress and there are ideas still being discussed for improving diff
quality.

M    include/llvm/InitializePasses.h
M    lib/CodeGen/CMakeLists.txt
M    lib/CodeGen/CodeGen.cpp
A    lib/CodeGen/MIRCanonicalizerPass.cpp

llvm-svn: 317285
2017-11-02 23:37:32 +00:00
Petar Jovanovic bb5c84fb57 Revert "Correct dwarf unwind information in function epilogue for X86"
This reverts r317100 as it introduced sanitizer-x86_64-linux-autoconf
buildbot failure (build #15606).

llvm-svn: 317136
2017-11-01 23:05:52 +00:00
Petar Jovanovic f2faee92aa Correct dwarf unwind information in function epilogue for X86
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.

It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.

The second part is platform independent and ensures that:

- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
  different passes. This is done in a late pass by analyzing information
  about cfa offset and cfa register in BBs and inserting additional CFI
  directives where necessary.

Changed CFI instructions so that they:

- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal

Added CFIInstrInserter pass:

- analyzes each basic block to determine cfa offset and register valid at
  its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
  incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
  rule for calculating CFA

Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.

CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.


Patch by Violeta Vukobrat.

Differential Revision: https://reviews.llvm.org/D35844

llvm-svn: 317100
2017-11-01 16:04:11 +00:00
Matthias Braun bb8507e63c Revert "TargetMachine: Merge TargetMachine and LLVMTargetMachine"
Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.

This reverts commit r315633.

llvm-svn: 315637
2017-10-12 22:57:28 +00:00
Matthias Braun 3a9c114b24 TargetMachine: Merge TargetMachine and LLVMTargetMachine
Merge LLVMTargetMachine into TargetMachine.

- There is no in-tree target anymore that just implements TargetMachine
  but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
  case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
  interface.

Differential Revision: https://reviews.llvm.org/D38489

llvm-svn: 315633
2017-10-12 22:28:54 +00:00
Lei Huang 34e6621724 Update branch coalescing to be a PowerPC specific pass
Implementing this pass as a PowerPC specific pass.  Branch coalescing utilizes
the analyzeBranch method which currently does not include any implicit operands.
This is not an issue on PPC but must be handled on other targets.

Pass is currently off by default. Enabled via -enable-ppc-branch-coalesce.

Differential Revision : https: // reviews.llvm.org/D32776

llvm-svn: 313061
2017-09-12 18:39:11 +00:00
Eric Christopher e42ac21499 Temporarily revert "Update branch coalescing to be a PowerPC specific pass"
From comments and code review it wasn't intended to be enabled by default yet.

This reverts commit r311588.

llvm-svn: 312214
2017-08-31 05:56:16 +00:00
Lei Huang 0cb591fc4c Update branch coalescing to be a PowerPC specific pass
Implementing this pass as a PowerPC specific pass.  Branch coalescing utilizes
the analyzeBranch method which currently does not include any implicit operands.
This is not an issue on PPC but must be handled on other targets.

Differential Revision : https: // reviews.llvm.org/D32776

llvm-svn: 311588
2017-08-23 19:25:04 +00:00
Daniel Jasper 559aa75382 Revert "r306529 - [X86] Correct dwarf unwind information in function epilogue"
I am 99% sure that this breaks the PPC ASAN build bot:
http://lab.llvm.org:8011/builders/sanitizer-ppc64be-linux/builds/3112/steps/64-bit%20check-asan/logs/stdio

If it doesn't go back to green, we can recommit (and fix the original
commit message at the same time :) ).

llvm-svn: 306676
2017-06-29 13:58:24 +00:00
Petar Jovanovic 7b3a38ec30 [X86] Correct dwarf unwind information in function epilogue
CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.

Majority of the changes in this patch:

1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.

These changes are target independent and described below.

Changed CFI instructions so that they:

1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal

Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.

Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.

Patch by Violeta Vukobrat.

Differential Revision: https://reviews.llvm.org/D18046

llvm-svn: 306529
2017-06-28 10:21:17 +00:00
Florian Hahn 5f746c8e27 Recommit rL305677: [CodeGen] Add generic MacroFusion pass
Use llvm::make_unique to avoid ambiguity with MSVC.

This patch adds a generic MacroFusion pass, that is used on X86 and
AArch64, which both define target-specific shouldScheduleAdjacent
functions. This generic pass should make it easier for other targets to
implement macro fusion and I intend to add macro fusion for ARM shortly.

Differential Revision: https://reviews.llvm.org/D34144

llvm-svn: 305690
2017-06-19 12:53:31 +00:00
Florian Hahn e16d3106f3 Revert r305677 [CodeGen] Add generic MacroFusion pass.
This causes Windows buildbot failures do an ambiguous call.

llvm-svn: 305681
2017-06-19 11:26:15 +00:00
Florian Hahn ee1b096f8a [CodeGen] Add generic MacroFusion pass.
Summary:
This patch adds a generic MacroFusion pass, that is used on X86 and
AArch64, which both define target-specific shouldScheduleAdjacent
functions. This generic pass should make it easier for other targets to
implement macro fusion and I intend to add macro fusion for ARM shortly.

Reviewers: craig.topper, evandro, t.p.northover, atrick, MatzeB

Reviewed By: MatzeB

Subscribers: atrick, aemerson, mgorny, javed.absar, kristof.beyls, llvm-commits

Differential Revision: https://reviews.llvm.org/D34144

llvm-svn: 305677
2017-06-19 10:51:38 +00:00
Dehao Chen 6b737ddce7 Add LiveRangeShrink pass to shrink live range within BB.
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.

Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb

Reviewed By: MatzeB, andreadb

Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32563

llvm-svn: 304371
2017-05-31 23:25:25 +00:00
Hans Wennborg b00ffd8cb7 Revert r302938 "Add LiveRangeShrink pass to shrink live range within BB."
This also reverts follow-ups r303292 and r303298.

It broke some Chromium tests under MSan, and apparently also internal
tests at Google.

llvm-svn: 303369
2017-05-18 18:50:05 +00:00
Ayman Musa c5490e5a29 [X86] Relocate code of replacement of subtarget unsupported masked memory intrinsics to run also on -O0 option.
Currently, when masked load, store, gather or scatter intrinsics are used, we check in CodeGenPrepare pass if the subtarget support these intrinsics, if not we replace them with scalar code - this is a functional transformation not an optimization (not optional).

CodeGenPrepare pass does not run when the optimization level is set to CodeGenOpt::None (-O0).

Functional transformation should run with all optimization levels, so here I created a new pass which runs on all optimization levels and does no more than this transformation.

Differential Revision: https://reviews.llvm.org/D32487

llvm-svn: 303050
2017-05-15 11:30:54 +00:00
Dehao Chen 65dd23e273 Add LiveRangeShrink pass to shrink live range within BB.
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.

Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb

Reviewed By: MatzeB, andreadb

Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32563

llvm-svn: 302938
2017-05-12 19:29:27 +00:00
Amara Emerson 836b0f48c1 Add a late IR expansion pass for the experimental reduction intrinsics.
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.

Differential Revision: https://reviews.llvm.org/D32245

llvm-svn: 302631
2017-05-10 09:42:49 +00:00
Matthias Braun e4e14ae507 MachineFrameInfo: Move implementation to an own file; NFC
Move implementation of the MachineFrameInfo class into
MachineFrameInfo.cpp

llvm-svn: 301494
2017-04-26 23:36:58 +00:00
Jessica Paquette 596f483a5e [Outliner] Fixed Asan bot failure in r296418
Fixed the asan bot failure which led to the last commit of the outliner being reverted.
The change is in lib/CodeGen/MachineOutliner.cpp in the SuffixTree's constructor. LeafVector
is no longer initialized using reserve but just a standard constructor.

llvm-svn: 297081
2017-03-06 21:31:18 +00:00
Nemanja Ivanovic b223cfabcc Improve scheduling with branch coalescing
This patch adds a MachineSSA pass that coalesces blocks that branch
on the same condition.

Committing on behalf of Lei Huang.

Differential Revision: https://reviews.llvm.org/D28249

llvm-svn: 296670
2017-03-01 20:29:34 +00:00
Matthias Braun 81f68ec3a9 Revert "Add MIR-level outlining pass"
Revert Machine Outliner for now, as it breaks the asan bot.

This reverts commit r296418.

llvm-svn: 296426
2017-02-28 02:24:30 +00:00
Matthias Braun d36410945f Add MIR-level outlining pass
This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html

The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.

This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.

The outliner is run like so:

clang -mno-red-zone -mllvm -enable-machine-outliner file.c

Patch by Jessica Paquette<jpaquette@apple.com>!

rdar://29166825

Differential Revision: https://reviews.llvm.org/D26872

llvm-svn: 296418
2017-02-28 00:33:32 +00:00
Adam Nemet bbb141c734 Add new pass LazyMachineBlockFrequencyInfo
And use it in MachineOptimizationRemarkEmitter.  A test will follow on top of
Justin's changes to enable MachineORE in AsmPrinter.

The approach is similar to the IR-level pass.  It's a bit simpler because BPI
is immutable at the Machine level so we don't need to make that lazy.

Because of this, a new function mapping is introduced (BPIPassTrait::getBPI).
This function extracts BPI from the pass.  In case of the lazy pass, this is
when the calculation of the BFI occurs.  For Machine-level, this is the
identity function.

Differential Revision: https://reviews.llvm.org/D29836

llvm-svn: 295072
2017-02-14 17:21:09 +00:00
Eric Fiselier 87c87f4c30 [CMake] Fix pthread handling for out-of-tree builds
LLVM defines `PTHREAD_LIB` which is used by AddLLVM.cmake and various projects
to correctly link the threading library when needed. Unfortunately
`PTHREAD_LIB` is defined by LLVM's `config-ix.cmake` file which isn't installed
and therefore can't be used when configuring out-of-tree builds. This causes
such builds to fail since `pthread` isn't being correctly linked.

This patch attempts to fix that problem by renaming and exporting
`LLVM_PTHREAD_LIB` as part of`LLVMConfig.cmake`. I renamed `PTHREAD_LIB`
because It seemed likely to cause collisions with downstream users of
`LLVMConfig.cmake`.

llvm-svn: 294690
2017-02-10 01:59:20 +00:00
Nirav Dave a7c041d147 [X86] Implement -mfentry
Summary: Insert calls to __fentry__ at function entry.

Reviewers: hfinkel, craig.topper

Subscribers: mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D28000

llvm-svn: 293648
2017-01-31 17:00:27 +00:00
Adam Nemet a964066705 New OptimizationRemarkEmitter pass for MIR
This allows MIR passes to emit optimization remarks with the same level
of functionality that is available to IR passes.

It also hooks up the greedy register allocator to report spills.  This
allows for interesting use cases like increasing interleaving on a loop
until spilling of registers is observed.

I still need to experiment whether reporting every spill scales but this
demonstrates for now that the functionality works from llc
using -pass-remarks*=<pass>.

Differential Revision: https://reviews.llvm.org/D29004

llvm-svn: 293110
2017-01-25 23:20:33 +00:00
Matthias Braun 710a4c1f3d CodeGen: Add/Factor out LiveRegUnits class; NFCI
This is a set of register units intended to track register liveness, it
is similar in spirit to LivePhysRegs.
You can also think of this as the liveness tracking parts of the
RegisterScavenger factored out into an own class.

This was proposed in http://llvm.org/PR27609

Differential Revision: http://reviews.llvm.org/D21916

llvm-svn: 292542
2017-01-20 00:16:14 +00:00
Daniel Jasper 0f77869d58 Move DwarfGenerator.cpp to unittests
So far it creates a test helper and so it should be moved there. It also
create a layering cycle between CodeGen and CodeGen/AsmPrinter, which
should be avoided.

Review: https://reviews.llvm.org/D27570
llvm-svn: 289044
2016-12-08 12:45:29 +00:00
Greg Clayton 3462a420d1 Make a DWARF generator so we can unit test DWARF APIs with gtest.
The only tests we have for the DWARF parser are the tests that use llvm-dwarfdump and expect output from textual dumps.

More DWARF parser modification are coming in the next few weeks and I wanted to add tests that can verify that we can encode and decode all form types, as well as test some other basic DWARF APIs where we ask DIE objects for their children and siblings.

DwarfGenerator.cpp was added in the lib/CodeGen directory. This file contains the code necessary to easily create DWARF for tests:

dwarfgen::Generator DG;
Triple Triple("x86_64--");
bool success = DG.init(Triple, Version);
if (!success)
  return;
dwarfgen::CompileUnit &CU = DG.addCompileUnit();
dwarfgen::DIE CUDie = CU.getUnitDIE();

CUDie.addAttribute(DW_AT_name, DW_FORM_strp, "/tmp/main.c");
CUDie.addAttribute(DW_AT_language, DW_FORM_data2, DW_LANG_C);

dwarfgen::DIE SubprogramDie = CUDie.addChild(DW_TAG_subprogram);
SubprogramDie.addAttribute(DW_AT_name, DW_FORM_strp, "main");
SubprogramDie.addAttribute(DW_AT_low_pc, DW_FORM_addr, 0x1000U);
SubprogramDie.addAttribute(DW_AT_high_pc, DW_FORM_addr, 0x2000U);

dwarfgen::DIE IntDie = CUDie.addChild(DW_TAG_base_type);
IntDie.addAttribute(DW_AT_name, DW_FORM_strp, "int");
IntDie.addAttribute(DW_AT_encoding, DW_FORM_data1, DW_ATE_signed);
IntDie.addAttribute(DW_AT_byte_size, DW_FORM_data1, 4);

dwarfgen::DIE ArgcDie = SubprogramDie.addChild(DW_TAG_formal_parameter);
ArgcDie.addAttribute(DW_AT_name, DW_FORM_strp, "argc");
// ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref4, IntDie);
ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref_addr, IntDie);

StringRef FileBytes = DG.generate();
MemoryBufferRef FileBuffer(FileBytes, "dwarf");
auto Obj = object::ObjectFile::createObjectFile(FileBuffer);
EXPECT_TRUE((bool)Obj);
DWARFContextInMemory DwarfContext(*Obj.get());
This code is backed by the AsmPrinter code that emits DWARF for the actual compiler.

While adding unit tests it was discovered that DIEValue that used DIEEntry as their values had bugs where DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref8, and DW_FORM_ref_udata forms were not supported. These are all now supported. Added support for DW_FORM_string so we can emit inlined C strings.

Centralized the code to unique abbreviations into a new DIEAbbrevSet class and made both the dwarfgen::Generator and the llvm::DwarfFile classes use the new class.

Fixed comments in the llvm::DIE class so that the Offset is known to be the compile/type unit offset.

DIEInteger now supports more DW_FORM values.

There are also unit tests that cover:

Encoding and decoding all form types and values
Encoding and decoding all reference types (DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8, DW_FORM_ref_udata, DW_FORM_ref_addr) including cross compile unit references with that go forward one compile unit and backward on compile unit.

Differential Revision: https://reviews.llvm.org/D27326

llvm-svn: 289010
2016-12-08 01:03:48 +00:00
Matthias Braun 7f423442d1 TargetSubtargetInfo: Move implementation to lib/CodeGen; NFC
TargetSubtargetInfo is filled with CodeGen specific interfaces nowadays
(getInstrInfo(), getFrameLowering(), getSelectionDAGInfo()) most of the
tuning flags like enablePostRAScheduler(), getAntiDepBreakMode(),
enableRALocalReassignment(), ... also do not seem to be universal enough
to make sense outside of CodeGen.

Differential Revision: https://reviews.llvm.org/D26948

llvm-svn: 287708
2016-11-22 22:09:03 +00:00
Chris Bieneman 05c279fc4b [CMake] NFC. Updating CMake dependency specifications
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.

llvm-svn: 287206
2016-11-17 04:36:50 +00:00
Matt Arsenault 36919a4f7c Move AArch64BranchRelaxation to generic code
llvm-svn: 283459
2016-10-06 15:38:53 +00:00
Hal Finkel 40d7f5c277 Add a counter-function insertion pass
As discussed in https://reviews.llvm.org/D22666, our current mechanism to
support -pg profiling, where we insert calls to mcount(), or some similar
function, is fundamentally broken. We insert these calls in the frontend, which
means they get duplicated when inlining, and so the accumulated execution
counts for the inlined-into functions are wrong.

Because we don't want the presence of these functions to affect optimizaton,
they should be inserted in the backend. Here's a pass which would do just that.
The knowledge of the name of the counting function lives in the frontend, so
we're passing it here as a function attribute. Clang will be updated to use
this mechanism.

Differential Revision: https://reviews.llvm.org/D22825

llvm-svn: 280347
2016-09-01 09:42:39 +00:00
Quentin Colombet 374796d678 [GlobalISel] Add a fallback path to SDISel.
When global-isel fails on a MachineFunction MF, MF will be cleaned up
and given to SDISel.
Thanks to this fallback, we can already perform correctness test even if
we support only a small portion of the functions in a test.

llvm-svn: 279891
2016-08-27 00:18:31 +00:00
Matthias Braun 733fe3676c CodeGen: Remove MachineFunctionAnalysis => Enable (Machine)ModulePasses
Re-apply this patch, hopefully I will get away without any warnings
in the constructor now.

This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.

This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.

Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.

Differential Revision: http://reviews.llvm.org/D23736

llvm-svn: 279602
2016-08-24 01:52:46 +00:00
Richard Smith 8c3fbdc6c4 Revert r279564. It introduces undefined behavior (binding a reference to a
dereferenced null pointer) in MachineModuleInfo::MachineModuleInfo that causes
-Werror builds (including several buildbots) to fail.

llvm-svn: 279580
2016-08-23 22:08:27 +00:00
Matthias Braun 4c1f1f120c CodeGen: Remove MachineFunctionAnalysis => Enable (Machine)ModulePasses
Re-apply this commit with the deletion of a MachineFunction delegated to
a separate pass to avoid use after free when doing this directly in
AsmPrinter.

This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.

This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.

Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.

Differential Revision: http://reviews.llvm.org/D23736

llvm-svn: 279564
2016-08-23 20:58:29 +00:00