Array destructors, like constructors, need to be called for each element of the
array separately. We do not have any mechanisms to do this in the analyzer,
so for now all we do is evaluate a single constructor or destructor
conservatively and give up. It automatically causes the necessary invalidation
and pointer escape for the whole array, because this is how RegionStore works.
Implement this conservative behavior for temporary destructors. This fixes the
crash on the provided test.
Differential Revision: https://reviews.llvm.org/D43149
llvm-svn: 325286
Temporary destructors fire at the end of the full-expression. It is reasonable
to attach the path note for entering/leaving the temporary destructor to its
CXXBindTemporaryExpr. This would not affect lifetime-extended temporaries with
their automatic destructors which aren't temporary destructors.
The path note may be confusing in the case of destructors after elidable copy
constructors.
Differential Revision: https://reviews.llvm.org/D43144
llvm-svn: 325284
Inline them if possible - a separate flag is added to control this.
The whole thing is under the cfg-temporary-dtors flag, off by default so far.
Temporary destructors are called at the end of full-expression. If the
temporary is lifetime-extended, automatic destructors kick in instead,
which are not addressed in this patch, and normally already work well
modulo the overally broken support for lifetime extension.
The patch operates by attaching the this-region to the CXXBindTemporaryExpr in
the program state, and then recalling it during destruction that was triggered
by that CXXBindTemporaryExpr. It has become possible because
CXXBindTemporaryExpr is part of the construction context since r325210.
Differential revision: https://reviews.llvm.org/D43104
llvm-svn: 325282
Don't look at the parent statement to figure out if the cxx-allocator-inlining
flag should kick in and prevent us from inlining the constructor within
a new-expression. We now have construction contexts for that purpose.
llvm-svn: 325278
Since r325210, in cfg-temporary-dtors mode, we can rely on the CFG to tell us
that we're indeed constructing a temporary, so we can trivially construct a
temporary region and inline the constructor.
Much like r325202, this is only done under the off-by-default
cfg-temporary-dtors flag because the temporary destructor, even if available,
will not be inlined and won't have the correct object value (target region).
Unless this is fixed, it is quite unsafe to inline the constructor.
If the temporary is lifetime-extended, the destructor would be an automatic
destructor, which would be evaluated with a "correct" target region - modulo
the series of incorrect relocations performed during the lifetime extension.
It means that at least, values within the object are guaranteed to be properly
escaped or invalidated.
Differential Revision: https://reviews.llvm.org/D43062
llvm-svn: 325211
EvalCallOptions were introduced in r324018 for allowing various parts of
ExprEngine to notify the inlining mechanism, while preparing for evaluating a
function call, of possible difficulties with evaluating the call that they
foresee. Then mayInlineCall() would still be a single place for making the
decision.
Use that mechanism for destructors as well - pass the necessary flags from the
CFG-element-specific destructor handlers.
Part of this patch accidentally leaked into r324018, which led into a change in
tests; this change is reverted now, because even though the change looked
correct, the underlying behavior wasn't. Both of these commits were not intended
to introduce any function changes otherwise.
Differential Revision: https://reviews.llvm.org/D42991
llvm-svn: 325209
This only affects the cfg-temporary-dtors mode - in this mode we begin inlining
constructors that are constructing function return values. These constructors
have a correct construction context since r324952.
Because temporary destructors are not only never inlined, but also don't have
the correct target region yet, this change is not entirely safe. But this
will be fixed in the subsequent commits, while this stays off behind the
cfg-temporary-dtors flag.
Lifetime extension for return values is still not modeled correctly.
Differential Revision: https://reviews.llvm.org/D42875
llvm-svn: 325202
In CFG, every DeclStmt has exactly one decl, which is always a variable.
It is also pointless to check that the initializer is the constructor because
that's how construction contexts work now.
llvm-svn: 325201
See reviews.llvm.org/M1 for evaluation, and
lists.llvm.org/pipermail/cfe-dev/2018-January/056718.html for
discussion.
Differential Revision: https://reviews.llvm.org/D42775
llvm-svn: 324956
Massive false positives were known to be caused by continuing the analysis
after a destructor with a noreturn attribute has been executed in the program
but not modeled in the analyzer due to being missing in the CFG.
Now that work is being done on enabling the modeling of temporary constructors
and destructors in the CFG, we need to make sure that the heuristic that
suppresses these false positives keeps working when such modeling is disabled.
In particular, different code paths open up when the corresponding constructor
is being inlined during analysis.
Differential Revision: https://reviews.llvm.org/D42779
llvm-svn: 324802
The analyzer was relying on peeking the next CFG element during analysis
whenever it was trying to figure out what object is being constructed
by a given constructor. This information is now available in the current CFG
element in all cases that were previously supported by the analyzer,
so no complicated lookahead is necessary anymore.
No functional change intended - the context in the CFG should for now be
available if and only if it was previously discoverable via CFG lookahead.
Differential Revision: https://reviews.llvm.org/D42721
llvm-svn: 324800
This expression may or may not be evaluated in compile time, so tracking the
result symbol is of potential interest. However, run-time offsetof is not yet
supported by the analyzer, so for now this callback is only there to assist
future implementation.
Patch by Henry Wong!
Differential Revision: https://reviews.llvm.org/D42300
llvm-svn: 324790
This builtin is evaluated in compile time. But in the analyzer we don't yet
automagically evaluate all calls that can be evaluated in compile time.
Patch by Felix Kostenzer!
Differential Revision: https://reviews.llvm.org/D42745
llvm-svn: 324789
Even though most of the inconsistencies in MallocChecker's bug categories were
fixed in r302016, one more was introduced in r301913 which was later missed.
Patch by Henry Wong!
Differential Revision: https://reviews.llvm.org/D43074
llvm-svn: 324680
This patch adds a new CFGStmt sub-class, CFGConstructor, which replaces
the regular CFGStmt with CXXConstructExpr in it whenever the CFG has additional
information to provide regarding what sort of object is being constructed.
It is useful for figuring out what memory is initialized in client of the
CFG such as the Static Analyzer, which do not operate by recursive AST
traversal, but instead rely on the CFG to provide all the information when they
need it. Otherwise, the statement that triggers the construction and defines
what memory is being initialized would normally occur after the
construct-expression, and the client would need to peek to the next CFG element
or use statement parent map to understand the necessary facts about
the construct-expression.
As a proof of concept, CFGConstructors are added for new-expressions
and the respective test cases are provided to demonstrate how it works.
For now, the only additional data contained in the CFGConstructor element is
the "trigger statement", such as new-expression, which is the parent of the
constructor. It will be significantly expanded in later commits. The additional
data is organized as an auxiliary structure - the "construction context",
which is allocated separately from the CFGElement.
Differential Revision: https://reviews.llvm.org/D42672
llvm-svn: 324668
It makes it easier to discriminate between values of similar expressions
in different stack frames.
It also makes the separate backtrace section in ExplodedGraph dumps redundant.
Differential Revision: https://reviews.llvm.org/D42552
llvm-svn: 324660
Due to Buildbot failures - most likely that's because target triples were not
specified in the tests, even though the checker behaves differently with
different target triples.
llvm-svn: 324167
This is a security check which is disabled by default but will be enabled
whenever the user consciously enables the security package. If mmap()ed memory
is both writable and executable, it makes it easier for the attacker to execute
arbitrary code when contents of this memory are compromised. Some applications
require such mmap()s though, such as different sorts of JIT.
Patch by David Carlier!
Differential Revision: https://reviews.llvm.org/D42645
llvm-svn: 324166
We already suppress such reports for inlined functions, we should then
get the same behavior for macros.
The underlying reason is that the same macro, can be called from many
different contexts, and nullability can only be expected in _some_ of
them.
Assuming that the macro can return null in _all_ of them sometimes leads
to a large number of false positives.
E.g. consider the test case for the dynamic cast implementation in
macro: in such cases, the bug report is unwanted.
Tracked in rdar://36304776
Differential Revision: https://reviews.llvm.org/D42404
llvm-svn: 324161
No in-tree checkers use this callback so far, hence no tests. But better fix
this now than remember to fix this when the checkers actually appear.
Patch by Henry Wong!
Differential Revision: https://reviews.llvm.org/D42785
llvm-svn: 324053
If the return statement is stored, we might as well allow querying
against it.
Also fix the bug where the return statement is not stored
if there is no return value.
This change un-merges two ExplodedNodes during call exit when the state
is otherwise identical - the CallExitBegin node itself and the "Bind
Return Value"-tagged node.
And expose the return statement through
getStatement helper function.
Differential Revision: https://reviews.llvm.org/D42130
llvm-svn: 324052
We use CXXTempObjectRegion exclusively as a bailout value for construction
targets when we are unable to find the correct construction region.
Sometimes it works correctly, but rather accidentally than intentionally.
Now that we want to increase the amount of situations where it works correctly,
the first step is to introduce a different way of communicating our failure
to find the correct construction region. EvalCallOptions are introduced
for this purpose.
For now EvalCallOptions are communicating two kinds of problems:
- We have been completely unable to find the correct construction site.
- We have found the construction site correctly, and there's more than one of
them (i.e. array construction which we currently don't support).
Accidentally find and fix a test in which the new approach to communicating
failures produces better results.
Differential Revision: https://reviews.llvm.org/D42457
llvm-svn: 324018
Do not attempt to get the pointee of void* while generating a bug report
(otherwise it will trigger an assert inside RegionStoreManager::getBinding
assert(!T->isVoidType() && "Attempting to dereference a void pointer!")).
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D42396
llvm-svn: 323382
This allows the analyzer to analyze ("inline") custom operator new() calls and,
even more importantly, inline constructors of objects that were allocated
by any operator new() - not necessarily a custom one.
All changes in the tests in the current commit are intended improvements,
even if they didn't carry any explicit FIXME flag.
It is possible to restore the old behavior via
-analyzer-config c++-allocator-inlining=false
(this flag is supported by scan-build as well, and it can be into a clang
--analyze invocation via -Xclang .. -Xclang ..). There is no intention to
remove the old behavior for now.
Differential Revision: https://reviews.llvm.org/D42219
rdar://problem/12180598
llvm-svn: 323373
I.e. not after. In the c++-allocator-inlining=true mode, we need to make the
assumption that the conservatively evaluated operator new() has returned a
non-null value. Previously we did this on CXXNewExpr, but now we have to do that
before calling the constructor, because some clever constructors are sometimes
assuming that their "this" is null and doing weird stuff. We would also crash
upon evaluating CXXNewExpr when the allocator was inlined and returned null and
had a throw specification; this is UB even for custom allocators, but we still
need not to crash.
Added more FIXME tests to ensure that eventually we fix calling the constructor
for null return values.
Differential Revision: https://reviews.llvm.org/D42192
llvm-svn: 323370
Analyzing problems which appear in scan-build results can be very
difficult, as after the launch no exact invocation is stored, and it's
super-hard to launch the debugger.
With this patch, the exact analyzer invocation appears in the footer,
and can be copied to debug/check reproducibility/etc.
rdar://35980230
llvm-svn: 323245
The check (inside StackHintGeneratorForSymbol::getMessage)
if (!N)
return getMessageForSymbolNotFound()
is moved to the beginning of the function.
Differential revision: https://reviews.llvm.org/D42388
Test plan: make check-all
llvm-svn: 323146
Fix an assertion failure caused by a missing CheckName. The malloc checker
enables "basic" support in the CStringChecker, which causes some CString
bounds checks to be enabled. In this case, make sure that we have a
valid CheckName for the BugType.
llvm-svn: 323052
MemRegion::getString() is a wrapper around MemRegion::dump(), which is not
user-friendly and should never be used for diagnostic messages.
Actual cases where raw dumps were reaching the user were unintentionally fixed
in r315736; these were noticed accidentally and shouldn't be reproducible
anymore. For now RetainCountChecker only tracks pointers through variable
regions, and for those dumps are "fine". However, we should still use a less
dangerous method for producing our path notes.
This patch replaces the dump with printing a variable name, asserting that this
is indeed a variable.
Differential Revision: https://reviews.llvm.org/D42015
llvm-svn: 322799
PreStmt<CXXNewExpr> was never called.
Additionally, under c++-allocator-inlining=true, PostStmt<CXXNewExpr> was
called twice when the allocator was inlined: once after evaluating the
new-expression itself, once after evaluating the allocator call which, for the
lack of better options, uses the new-expression as the call site.
This patch fixes both problems.
Differential Revision: https://reviews.llvm.org/D41934
rdar://problem/12180598
llvm-svn: 322797
Add PostAllocatorCall program point to represent the moment in the analysis
between the operator new() call and the constructor call. Pointer cast from
"void *" to the correct object pointer type has already happened by this point.
The new program point, unlike the previously used PostImplicitCall, contains a
reference to the new-expression, which allows adding path diagnostics over it.
Differential Revision: https://reviews.llvm.org/D41800
rdar://problem/12180598
llvm-svn: 322796
Pointer escape event notifies checkers that a pointer can no longer be reliably
tracked by the analyzer. For example, if a pointer is passed into a function
that has no body available, or written into a global, MallocChecker would
no longer report memory leaks for such pointer.
In case of operator new() under -analyzer-config c++-allocator-inlining=true,
MallocChecker would start tracking the pointer allocated by operator new()
only to immediately meet a pointer escape event notifying the checker that the
pointer has escaped into a constructor (assuming that the body of the
constructor is not available) and immediately stop tracking it. Even though
it is theoretically possible for such constructor to put "this" into
a global container that would later be freed, we prefer to preserve the old
behavior of MallocChecker, i.e. a memory leak warning, in order to
be able to find any memory leaks in C++ at all. In fact, c++-allocator-inlining
*reduces* the amount of false positives coming from this-pointers escaping in
constructors, because it'd be able to inline constructors in some cases.
With other checkers working similarly, we simply suppress the escape event for
this-value of the constructor, regardless of analyzer options.
Differential Revision: https://reviews.llvm.org/D41797
rdar://problem/12180598
llvm-svn: 322795
Implements finding appropriate source locations for intermediate diagnostic
pieces in path-sensitive bug reports that need to descend into an inlined
operator new() call that was called via new-expression. The diagnostics have
worked correctly when operator new() was called "directly".
Differential Revision: https://reviews.llvm.org/D41409
rdar://problem/12180598
llvm-svn: 322791