This is necessary not only for representing empty ranges, but for handling
multibyte characters in the input. (If the end pointer in a range refers to
a multibyte character, should it point to the beginning or the end of the
character in a char array?) Some of the code in the asm parsers was already
assuming this anyway.
llvm-svn: 171765
leaving this undefined, and despite the sentence in the standard that
seems to require it, I'll cede the point and assume its a bug in the
wording. Other parts of POSIX regularly allow for things to be -1
instead of undefined, this should too. Makes things more consistent too.
This should have to real impact for folks though.
llvm-svn: 171574
defines _POSIX_CPUTIME but doesn't support the clock_* functions.
I don't test the value of _POSIX_CPUTIME because the spec merely says
that if it is defined, the CPU-specific timers are available, whereas it
says that _POSIX_TIMERS must be defined and defined to a value greater
than zero. However, this may not work, as the POSIX spec clearly states:
"If the symbolic constant _POSIX_CPUTIME is defined, then the symbolic
constant _POSIX_TIMERS shall also be defined by the implementation to
have the value 200112L."
If this doesn't work, I'll add more hacks for Darwin.
llvm-svn: 171565
wall time, user time, and system time since a process started.
For walltime, we currently use TimeValue's interface and a global
initializer to compute a close approximation of total process runtime.
For user time, this adds support for an somewhat more precise timing
mechanism -- clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock
selected.
For system time, we have to do a full getrusage call to extract the
system time from the OS. This is expensive but unavoidable.
In passing, clean up the implementation of the old APIs and fix some
latent bugs in the Windows code. This might have manifested on Windows
ARM systems or other systems with strange 64-bit integer behavior.
The old API for this both user time and system time simultaneously from
a single getrusage call. While this results in fewer system calls, it
also results in a lower precision user time and if only user time is
desired, it introduces a higher overhead. It may be worthwhile to switch
some of the pass timers to not track system time and directly track user
and wall time. The old API also tracked walltime in a confusing way --
it just set it to the current walltime rather than providing any measure
of wall time since the process started the way buth user and system time
are tracked. The new API is more consistent here.
The plan is to eventually implement these methods for a *child* process
by using the wait3(2) system call to populate an rusage struct
representing the whole subprocess execution. That way, after waiting on
a child process its stats will become accurate and cheap to query.
llvm-svn: 171551
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
utils/sort_includes.py script.
Most of these are updating the new R600 target and fixing up a few
regressions that have creeped in since the last time I sorted the
includes.
llvm-svn: 171362
Implement the old API in terms of the new one. This simplifies the
implementation on Windows which can now re-use the self_process's once
initialization.
llvm-svn: 171330
Fix a truly odd namespace qualifier that was flat out wrong in the
process. The fully qualified namespace would have been
llvm::sys::TimeValue, llvm::TimeValue makes no sense.
llvm-svn: 171292
The coding style used here is not LLVM's style because this is modeled
after a Boost interface and thus done in the style of a candidate C++
standard library interface. I'll probably end up proposing it as
a standard C++ library if it proves to be reasonably portable and
useful.
This is just the most basic parts of the interface -- getting the
process ID out of it. However, it helps sketch out some of the boiler
plate such as the base class, derived class, shared code, and static
factory function. It also introduces a unittest so that I can
incrementally ensure this stuff works.
However, I've not even compiled this code for Windows yet. I'll try to
fix any Windows fallout from the bots, and if I can't fix it I'll revert
and get someone on Windows to help out. There isn't a lot more that is
mandatory, so soon I'll switch to just stubbing out the Windows side and
get Michael Spencer to help with implementation as he can test it
directly.
llvm-svn: 171289
structures to and from YAML using traits. The first client will
be the test suite of lld. The documentation will show up at:
http://llvm.org/docs/YamlIO.html
llvm-svn: 170019
textually as NativeClient. Also added a link to the native client project for
readers unfamiliar with it.
A Clang patch will follow shortly.
llvm-svn: 169291
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
"Windows.h" includes <Windows.h> which defines a bunch of stuff it shouldn't
(even with all the restriction macros). We have no control over this file, so
make it's scope as small as possible.
llvm-svn: 169165
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
uses. APFloat::convert() takes the pointer to the fltSemantics
variable, which is later accessed it in ~APFloat() desctructor.
That is, semantics must still be alive at the moment we delete
APFloat.
Found by experimental AddressSanitizer use-after-scope checker.
llvm-svn: 169047
Rationale:
1) This was the name in the comment block. ;]
2) It matches Clang's __has_feature naming convention.
3) It matches other compiler-feature-test conventions.
Sorry for the noise. =]
I've also switch the comment block to use a \brief tag and not duplicate
the name.
llvm-svn: 168996
appropriate unit tests. This change in itself is not expected to
affect any functionality at this point, but it will serve as a
stepping stone to improve FileCheck's variable matching capabilities.
Luckily, our regex implementation already supports backreferences,
although a bit of hacking is required to enable it. It supports both
Basic Regular Expressions (BREs) and Extended Regular Expressions
(EREs), without supporting backrefs for EREs, following POSIX strictly
in this respect. And EREs is what we actually use (rightly). This is
contrary to many implementations (including the default on Linux) of
POSIX regexes, that do allow backrefs in EREs.
Adding backref support to our EREs is a very simple change in the
regcomp parsing code. I fail to think of significant cases where it
would clash with existing things, and can bring more versatility to
the regexes we write. There's always the danger of a backref in a
specially crafted regex causing exponential matching times, but since
we mainly use them for testing purposes I don't think it's a big
problem. [it can also be placed behind a flag specific to FileCheck,
if needed].
For more details, see:
* http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-November/055840.html
* http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20121126/156878.html
llvm-svn: 168802
The rationale is to get YAML filenames in diagnostics from
yaml::Stream::printError -- currently the filename is hard-coded as
"YAML" because there's no buffer information available.
Patch by Kim Gräsman!
llvm-svn: 168341
- The code could infinite loop trying to create unique files, if the directory
containing the unique file exists, but open() calls on non-existent files in
the path return ENOENT. This is true on the /dev/fd filesystem, for example.
- Will add a clang side test case for this.
llvm-svn: 168081
treating it as if it were an IEEE floating-point type with 106-bit
mantissa.
This makes compile-time arithmetic on "long double" for PowerPC
in clang (in particular parsing of floating point constants)
work, and fixes all "long double" related failures in the test
suite.
llvm-svn: 166951
This adds 'elf' as a recognized target triple environment value and overrides the default generated object format on Windows platforms if that value is present. This patch also enables MCJIT tests on Windows using the new environment value.
llvm-svn: 165030
For example, under a Linux chroot, /proc/ might not be mounted.
Therefor, we test if this file exist. If it is the case, use it (the current
behavior). Otherwise, we fall back to the detection used by *BSD.
The issue has been reported initially on the Debian bug tracker:
http://bugs.debian.org/674588
llvm-svn: 164676
whether or not we want to print out backtrace information. Useful
for libraries that don't need backtrace information on a crash.
rdar://11844710
llvm-svn: 164426
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph);
* use \param instead of \arg to document parameters in order to be consistent
with the rest of the codebase.
llvm-svn: 163902
Most of the code guarded with ANDROIDEABI are not
ARM-specific, and having no relation with arm-eabi.
Thus, it will be more natural to call this
environment "Android" instead of "ANDROIDEABI".
Note: We are not using ANDROID because several projects
are using "-DANDROID" as the conditional compilation
flag.
llvm-svn: 163087
Tombstones and full hash collisions are rare, mark the "empty"
and "no collision" paths as likely. The bug in simplifycfg
that prevented the hints from being picked during selfhost
up was fixed recently :)
llvm-svn: 162874
Adds the vendor 'fsl' (used by Freescale SDK) to Triple. This will allow
clang support for Freescale cross-compile configurations.
Patch by Tobias von Koch.
llvm-svn: 162726
Since the llvm::sys::fs::map_file_pages() support function it relies on
is not yet implemented on Windows, the unit tests for FileOutputBuffer
are currently conditionalized to run only on unix.
llvm-svn: 161099
It is optimal at least up to 7 bits (I've tested all such cases)
This change to truncate() allows a little simplification to the multiplication code,
and it also makes multiplication optimal :)
llvm-svn: 160512
when run on an Intel Atom processor. The failures have arisen due
to changes elsewhere in the trunk over the past 8 weeks or so.
These failures were not detected by the Atom buildbot because the
CPU on the Atom buildbot was not being detected as an Atom CPU.
The fix for this problem is in Host.cpp and X86Subtarget.cpp, but
shall remain commented out until the current set of Atom test failures
are fixed.
Patch by Andy Zhang and Tyler Nowicki!
llvm-svn: 160451
file buffer is null-terminated.
If the file is smaller than we thought, mmap will not allow dereferencing
past the pages that are enough to cover the actual file size,
even though we asked for a larger address range.
rdar://11612916
llvm-svn: 160075
The cpuid registers are only available in privileged mode so we don't have
an OS-independent way of implementing this. ARM doesn't provide a list of
processor IDs so the list is somewhat incomplete.
llvm-svn: 159228
Fix 'sys::IdentifyFileType' to work with big and little endian byte orderings
when reading the ELF object file type.
Initial patch by Stefan Hepp.
llvm-svn: 159138
llvm::RawMemoryObject handles empty ranges just fine, and the assert can
be triggered in the wild by e.g. invoking clang with a file that
included an empty pre-compiled header file when clang has been built
with assertions enabled. Without assertions enabled, clang will properly
report that the empty file is not a valid PCH.
llvm-svn: 158769
StringMap suffered from the same bug as DenseMap: when you explicitly
construct it with a small number of buckets, you can arrange for the
tombstone-based growth path to be followed when the number of buckets
was less than '8'. In that case, even with a full map, it would compare
'0' as not less than '0', and refuse to grow the table, leading to
inf-loops trying to find an empty bucket on the next insertion. The fix
is very simple: use '<=' as the comparison. The same fix was applied to
DenseMap as well during its recent refactoring.
Thanks to Alex Bolz for the great report and test case. =]
llvm-svn: 158725
This is likely only the tip of the ice berg, but this particular bug
caused any double-free on a glibc system to turn into a deadlock! It is
not generally safe to either allocate or release heap memory from within
the signal handler. The 'pop_back()' in RemoveFilesToRemove was deleting
memory and causing the deadlock. What's worse, eraseFromDisk in PathV1
has lots of allocation and deallocation paths. We even passed 'true' in
a place that would have caused the *signal handler* to try to run the
'system' system call and shell out to 'rm -rf'. That was never going to
work...
This patch switches the file removal to use a vector of strings so that
the exact text needed for the 'unlink' system call can be stored there.
It switches the loop to be a boring indexed loop, and directly calls
unlink without looking at the error. It also works quite hard to ensure
that calling 'c_str()' is safe, by ensuring that the non-signal-handling
code path that manipulates the vector always leaves it in a state where
every element has already had 'c_str()' called at least once.
I dunno exactly how overkill this is, but it fixes the
deadlock-on-double free issue, and seems likely to prevent any other
issues from sneaking up.
Sorry for not having a test case, but I *really* don't know how to test
signal handling code easily....
llvm-svn: 158580
POWER4 is a 64-bit CPU (better matched to the 970).
The g3 is really the 750 (no altivec), the g4+ is the 74xx (not the 750).
Patch by Andreas Tobler.
llvm-svn: 158363
Original commit message:
Move PPC host-CPU detection logic from PPCSubtarget into sys::getHostCPUName().
Both the new Linux functionality and the old Darwin functions have been moved.
This change also allows this information to be queried directly by clang and
other frontends (clang, for example, will now have real -mcpu=native support).
llvm-svn: 158349
thread local data, embed them in the class using a uint64_t and make sure
we get compiler errors if there's a platform where this is not big enough.
This makes ThreadLocal more safe for using it in conjunction with CrashRecoveryContext.
Related to crash in rdar://11434201.
llvm-svn: 158342
Both the new Linux functionality and the old Darwin functions have been moved.
This change also allows this information to be queried directly by clang and
other frontends (clang, for example, will now have real -mcpu=native support).
llvm-svn: 158337
Apart from being slightly cheaper, this fixes a real bug that hits 32 bit
linux systems. When passing a file larger than 2G to be linked (which isn't
that uncommon with large projects such as WebKit), clang's driver checks
if the file exists but the file size doesn't fit in an off_t and stat(2)
fails with EOVERFLOW. Clang then says that the file doesn't exist instead
of passing it to the linker.
llvm-svn: 157891
For the Family 6 switch in sys::getHostCPUName, an unrecognized model was
reported as "i686". That's a really bad default since it means that new
CPUs will be treated as if they can only use 32-bit code. This just looks
at the cpuid extended feature flag for 64 bit support, and if that is set,
it uses a default x86-64 cpu. Similar logic is already used for the Family
15 code. <rdar://problem/11314502>
llvm-svn: 156486
- Just use sys::Process::GetRandomNumber instead of having two poor
implementations.
- This is ~70 times (!) faster on my OS X machine.
llvm-svn: 156238
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
llvm-svn: 156196
When building LLVM on Linux with libc++ with CMake TIME_WITH_SYS_TIME is
undefined, and HAVE_SYS_TIME_H is defined. This ends up including
sys/time.h but not time.h. Unix/TimeValue.inc requires time.h for asctime_r
and localtime. libstdc++ seems to include time.h anyway, but libc++ does
not.
Fix this by always including time.h
llvm-svn: 155382
The problem is that the struct file_status on UNIX systems has two
members called st_dev and st_ino; those are also members of the
struct stat, and they are reserved identifiers which can also be
provided as #define (and this is the case for st_dev on Hurd).
The solution (attached) is to rename them, for example adding a
"fs_" prefix (= file status) to them.
Patch by Pino Toscano
llvm-svn: 155354
DenseMap's hash function uses slightly more entropy and reduces hash collisions
significantly. I also experimented with Hashing.h, but it didn't gave a lot of
improvement while being much more expensive to compute.
llvm-svn: 154996