This led to crashes as the line number cache would report a bogus line number
for a line of code, and we'd try to find a nonexistent column within the line
when printing diagnostics.
llvm-svn: 309503
- This will also be used for the forthcoming __VA_OPT__ feature approved for C++2a.
- recommended by rsmith during his review of the __VA_OPT__ patch (https://reviews.llvm.org/D35782)
llvm-svn: 308948
- Extracted the reading of the tokens out into a separate function.
- Replace 'Argument' with 'Parameter' when referring to the identifiers of the macro definition (as opposed to the supplied arguments - MacroArgs - during the macro invocation).
This is in preparation for submitting patches for review to implement __VA_OPT__ which will otherwise just keep lengthening the HandleDefineDirective function and making it less comprehensible.
I will also directly update some extra clang tooling that is broken by the change from Argument to Parameter.
Hopefully the bots will stay appeased.
Thanks!
llvm-svn: 308190
- Extracted the reading of the tokens out into a separate function.
- Replace 'Argument' with 'Parameter' when referring to the identifiers of the macro definition (as opposed to the supplied arguments - MacroArgs - during the macro invocation).
This is in preparation for submitting patches for review to implement __VA_OPT__ which will otherwise just keep lengthening the HandleDefineDirective function and making it less comprehensible.
Thanks!
llvm-svn: 308157
The goal of this commit is to fix clang-format so it does not merge tokens when
using the alternative spelling keywords. (eg: "not foo" should not become "notfoo")
The problem is that Preprocessor::HandleIdentifier used to drop the identifier info
from the token for these keyword. This means the first condition of
TokenAnnotator::spaceRequiredBefore is not met. We could add explicit check for
the spelling in that condition, but I think it is better to keep the IdentifierInfo
and handle the operator keyword explicitly when needed. That actually leads to simpler
code, and probably slightly more efficient as well.
Another side effect of this change is that __identifier(and) will now work as
one would expect, removing a FIXME from the MicrosoftExtensions.cpp test
Differential Revision: https://reviews.llvm.org/D35172
llvm-svn: 308008
This patch extends the `overloadable` attribute to allow for one
function with a given name to not be marked with the `overloadable`
attribute. The overload without the `overloadable` attribute will not
have its name mangled.
So, the following code is now legal:
void foo(void) __attribute__((overloadable));
void foo(int);
void foo(float) __attribute__((overloadable));
In addition, this patch fixes a bug where we'd accept code with
`__attribute__((overloadable))` inconsistently applied. In other words,
we used to accept:
void foo(void);
void foo(void) __attribute__((overloadable));
But we will do this no longer, since it defeats the original purpose of
requiring `__attribute__((overloadable))` on all redeclarations of a
function.
This breakage seems to not be an issue in practice, since the only code
I could find that had this pattern often looked like:
void foo(void);
void foo(void) __attribute__((overloadable)) __asm__("foo");
void foo(int) __attribute__((overloadable));
...Which can now be simplified by simply removing the asm label and
overloadable attribute from the redeclaration of `void foo(void);`
Differential Revision: https://reviews.llvm.org/D32332
llvm-svn: 306467
'HandleEndifDirective' asserts that 'WasSkipping' is false, so switch to using 'FoundNonSkip' as the hint for 'SingleFileParseMode' to keep going with parsing.
llvm-svn: 305940
This is useful for being able to parse the preprocessor directive blocks even if the header, that defined the macro that is checked, hasn't been included.
Differential Revision: https://reviews.llvm.org/D34263
llvm-svn: 305797
for preprocessing
r300667 added support for editor placeholder to Clang. That commit didn’t take
into account that users who use Clang for preprocessing only (-E) will get the
"editor placeholder in source file" error when preprocessing their source
(PR33394). This commit ensures that Clang doesn't lex editor placeholders when
running a preprocessor only action.
rdar://32718000
Differential Revision: https://reviews.llvm.org/D34256
llvm-svn: 305576
correct getNumArguments
StringifiedArguments is allocated (resized) based on the size the
getNumArguments function. However, this function ACTUALLY currently
returns the amount of total UnexpArgTokens which is minimum the same as
the new implementation of getNumMacroArguments, since empty/omitted arguments
result in 1 UnexpArgToken, and included ones at minimum include 2
(1 for the arg itself, 1 for eof).
This patch renames the otherwise unused getNumArguments to be more clear
that it is the number of arguments that the Macro expects, and thus the maximum
number that can be stringified. This patch also replaces the explicit memset
(which results in value instantiation of the new tokens, PLUS clearing the
memory) with brace initialization.
Differential Revision: https://reviews.llvm.org/D32046
llvm-svn: 305425
UBSan found an issue with a nullptr being assigned to a reference.
This was because a following function went back and checked the
identifier in the CPPOperatorName case. This patch corrects that
location with the original logic as well.
llvm-svn: 305128
as part of a compilation.
This is intended for two purposes:
1) Writing self-contained test cases for modules: we can now write a single
source file test that builds some number of module files on the side and
imports them.
2) Debugging / test case reduction. A single-source testcase is much more
amenable to reduction, compared to a VFS tarball or .pcm files.
llvm-svn: 305101
to support operator keywords used in Windows SDK, alter token type when
seen in system headers
Hello, I submitted D33505 to address this problem, but the
proposal was rejected as too big a hammer.
This change will allow clang to parse the WindowsSDK header <query.h>
which uses the operator name "or" as a field name. Treat cpp operator
keywords as ordinary identifiers inside the Microsoft headers, but
treat them as usual in the user's program.
Original Submitter: Melanie Blower (mibintc)
Differential Revision: https://reviews.llvm.org/D33782
llvm-svn: 305087
This is useful for parsing a single file, as a fast/inaccurate 'mode' that can still provide declarations from the file, like the classes and their methods.
llvm-svn: 305044
This patch adds support for a `header` declaration in a module map to specify
certain `stat` information (currently, size and mtime) about that header file.
This has two purposes:
- It removes the need to eagerly `stat` every file referenced by a module map.
Instead, we track a list of unresolved header files with each size / mtime
(actually, for simplicity, we track submodules with such headers), and when
attempting to look up a header file based on a `FileEntry`, we check if there
are any unresolved header directives with that `FileEntry`'s size / mtime and
perform deferred `stat`s if so.
- It permits a preprocessed module to be compiled without the original files
being present on disk. The only reason we used to need those files was to get
the `stat` information in order to do header -> module lookups when using the
module. If we're provided with the `stat` information in the preprocessed
module, we can avoid requiring the files to exist.
Unlike most `header` directives, if a `header` directive with `stat`
information has no corresponding on-disk file the enclosing module is *not*
marked unavailable (so that behavior is consistent regardless of whether we've
resolved a header directive, and so that preprocessed modules don't get marked
unavailable). We could actually do this for all `header` directives: the only
reason we mark the module unavailable if headers are missing is to give a
diagnostic slightly earlier (rather than waiting until we actually try to build
the module / load and validate its .pcm file).
Differential Revision: https://reviews.llvm.org/D33703
llvm-svn: 304515
to the original module map.
Also use the path and name of the original module map when emitting that
information into the .pcm file. The upshot of this is that the produced .pcm
file will track information for headers in their original locations (where the
module was preprocessed), not relative to whatever directory the preprocessed
module map was in when it was built.
llvm-svn: 304346
Previously, a preamble only included #if blocks (and friends like
ifdef) if there was a corresponding #endif before any declaration or
definition. The problem is that any header file that uses include guards
will not have a preamble generated, which can make code-completion very
slow.
To prevent errors about unbalanced preprocessor conditionals in the
preamble, and unbalanced preprocessor conditionals after a preamble
containing unfinished conditionals, the conditional stack is stored
in the pch file.
This fixes PR26045.
Differential Revision: http://reviews.llvm.org/D15994
llvm-svn: 304207
and it has an include guard, produce callbacks for a module import, not for a
skipped non-modular header.
Fixes -E output when preprocessing a module to list these cases as a module
import, rather than suppressing the #include and losing the import side effect.
llvm-svn: 304183
This is an initial commit to allow using it with constant expressions, a follow-up commit will enable full support for it in ObjC methods.
llvm-svn: 303712
C++14 added user-defined literal support for complex numbers so that you can
write something like "complex<double> val = 2i". However, there is an existing
GNU extension supporting this syntax and interpreting the result as a _Complex
type.
This changes parsing so that such literals are interpreted in terms of C++14's
operators if an overload is present but otherwise falls back to the original
GNU extension.
llvm-svn: 303694
This allows #line directives to appear in system headers that have code
that clang would normally warn on. This is compatible with GCC, which is
easy to test by running `gcc -E`.
Fixes PR30752
llvm-svn: 303582
remove the mechanism for doing so.
This mechanism was incorrect in the presence of preprocessed modules (and
#pragma clang module begin/end).
llvm-svn: 303469
When reaching the end of a module, we used to convert its macros to
ModuleMacros but also leave them in the MacroDirective chain for the
identifier. This meant that every lookup of such a macro would find two
(identical) definitions. It also made it difficult to determine the correct
owner for a macro when reaching the end of a module: the most recent
MacroDirective in the chain could be from an #included submodule rather than
the current module.
Simplify this: whenever we convert a MacroDirective to a ModuleMacro when
leaving a module, clear out the MacroDirective chain for that identifier, and
just rely on the ModuleMacro to provide the macro definition information.
(We don't want to do this for local submodule visibility mode, because in that
mode we maintain a distinct MacroDirective chain for each submodule, and we
need to keep around the prior MacroDirective in case we re-enter the submodule
-- for instance, if its header is #included more than once in a module build,
we need the include guard directive to stick around. But the problem doesn't
arise in this case for the same reason: each submodule has its own
MacroDirective chain, so the macros don't leak out of submodules in the first
place.)
This reinstates r302932, reverted in r302947, with a fix for a bug that
resulted in us sometimes losing macro definitions due to failing to clear out
the overridden module macro list when promoting a directive to a module macro.
llvm-svn: 303468
retrieving the identifer info for an Objective-C keyword
This commit fixes an assertion that's triggered in getIdentifier when the token
is an annotation token.
rdar://32225463
llvm-svn: 303246
When reaching the end of a module, we used to convert its macros to
ModuleMacros but also leave them in the MacroDirective chain for the
identifier. This meant that every lookup of such a macro would find two
(identical) definitions. It also made it difficult to determine the correct
owner for a macro when reaching the end of a module: the most recent
MacroDirective in the chain could be from an #included submodule rather than
the current module.
Simplify this: whenever we convert a MacroDirective to a ModuleMacro when
leaving a module, clear out the MacroDirective chain for that identifier, and
just rely on the ModuleMacro to provide the macro definition information.
(We don't want to do this for local submodule visibility mode, because in that
mode we maintain a distinct MacroDirective chain for each submodule, and we
need to keep around the prior MacroDirective in case we re-enter the submodule
-- for instance, if its header is #included more than once in a module build,
we need the include guard directive to stick around. But the problem doesn't
arise in this case for the same reason: each submodule has its own
MacroDirective chain, so the macros don't leak out of submodules in the first
place.)
llvm-svn: 302932
In r298391 we fixed the umbrella framework model to work when submodules
named "Private" are used. This complements the work by allowing the
umbrella framework model to work in general.
rdar://problem/31790067
llvm-svn: 302491
To support this, an optional marker "#pragma clang module contents" is
recognized in module map files, and the rest of the module map file from that
point onwards is treated as the source of the module. Preprocessing a module
map produces the input module followed by the marker and then the preprocessed
contents of the module.
Ignoring line markers, a preprocessed module might look like this:
module A {
header "a.h"
}
#pragma clang module contents
#pragma clang module begin A
// ... a.h ...
#pragma clang module end
The preprocessed output generates line markers, which are not accepted by the
module map parser, so -x c++-module-map-cpp-output should be used to compile
such outputs.
A couple of major parts do not work yet:
1) The files that are listed in the module map must exist on disk, in order to
build the on-disk header -> module lookup table in the PCM file. To fix
this, we need the preprocessed output to track the file size and other stat
information we might use to build the lookup table.
2) Declaration ownership semantics don't work properly yet, since mapping from
a source location to a module relies on mapping from FileIDs to modules,
which we can't do if module transitions can occur in the middle of a file.
llvm-svn: 302309
This patch adds a fix-it for the -Wunguarded-availability warning. This fix-it
is similar to the Swift one: it suggests that you wrap the statement in an
`if (@available)` check. The produced fixits are indented (just like the Swift
ones) to make them look nice in Xcode's fix-it preview.
rdar://31680358
Differential Revision: https://reviews.llvm.org/D32424
llvm-svn: 302253
The whitespace should come from the argument name in the macro
expansion, rather than from the token passed to the macro (same as it
does when not pasting).
Added a new test case for the change in behavior to stringize_space.c.
FileCheck'ized macro_paste_commaext.c, tweaked the test case, and
added a comment; no behavioral change to this test.
Differential Revision: https://reviews.llvm.org/D30427
llvm-svn: 302195
These pragmas are intended to simulate the effect of entering or leaving a file
with an associated module. This is not completely implemented yet: declarations
between the pragmas will not be attributed to the correct module, but macro
visibility is already functional.
Modules named by #pragma clang module begin must already be known to clang (in
some module map that's either loaded or on the search path).
llvm-svn: 302098
Many of our supported configurations support modules but do not have any
first-class syntax to perform a module import. This leaves us with a problem:
there is no way to represent the expansion of a #include that imports a module
in the -E output for such languages. (We don't want to just leave it as a
#include because that requires the consumer of the preprocessed source to have
the same file system layout and include paths as the creator.)
This patch adds a new pragma:
#pragma clang module import MODULE.NAME.HERE
that imports a module, and changes -E and -frewrite-includes to use it when
rewriting a #include that maps to a module import. We don't make any attempt
to use a native language syntax import if one exists, to get more consistent
output. (If in the future, @import and #include have different semantics in
some way, the pragma will track the #include semantics.)
llvm-svn: 301725
One of the -Wincomplete-umbrella warnings diagnoses when a header is present in
the directory but it's not present in the umbrella header. Currently, this
warning only happens on top level modules; any submodule using an umbrella
header does not get this warning. Fix that by also considering the submodules.
Differential Revision: https://reviews.llvm.org/D32576
rdar://problem/22623686
llvm-svn: 301597
If a file search involves a header map, suppress
-Wnonportable-include-path. It's firing lots of false positives for
framework authors internally, and it's not trivial to fix.
Consider a framework called "Foo" with a main (installed) framework header
"Foo/Foo.h". It's atypical for "Foo.h" to actually live inside a
directory called "Foo" in the source repository. Instead, the
build system generates a header map while building the framework.
If Foo.h lives at the top-level of the source repository (common), and
the git repo is called ssh://some.url/foo.git, then the header map will
have something like:
Foo/Foo.h -> /Users/myname/code/foo/Foo.h
where "/Users/myname/code/foo" is the clone of ssh://some.url/foo.git.
After #import <Foo/Foo.h>, the current implementation of
-Wnonportable-include-path will falsely assume that Foo.h was found in a
nonportable way, because of the name of the git clone (.../foo/Foo.h).
However, that directory name was not involved in the header search at
all.
This commit adds an extra parameter to Preprocessor::LookupFile and
HeaderSearch::LookupFile to track if the search used a header map,
making it easy to suppress the warning. Longer term, once we find a way
to avoid the false positive, we should turn the warning back on.
rdar://problem/28863903
llvm-svn: 301592
This reverts commit r301449. It breaks the build with:
MacroPPCallbacks.h:114:50: error: non-virtual member function marked 'override' hides virtual member function
llvm-svn: 301469
Summary:
The PPCallbacks::MacroUndefined callback is currently insufficient for clients that need to track the MacroDirectives.
This patch adds an additional argument to PPCallbacks::MacroUndefined that is the undef MacroDirective.
Reviewers: bruno, manmanren
Reviewed By: bruno
Subscribers: nemanjai, cfe-commits
Differential Revision: https://reviews.llvm.org/D29923
llvm-svn: 301449
Drive-by fix (noticed while working on https://reviews.llvm.org/D32205):
DebugOverflowStack() is supposed to provoke a stack overflow, however
LLVM was smart enough to use the red-zone and fold the load into a tail
jump on x86_64 optimizing this to an endless loop instead of a stack
overflow.
llvm-svn: 301218
This commit teaches Clang to recognize editor placeholders that are produced
when an IDE like Xcode inserts a code-completion result that includes a
placeholder. Now when the lexer sees a placeholder token, it emits an
'editor placeholder in source file' error and creates an identifier token
that represents the placeholder. The parser/sema can now recognize the
placeholders and can suppress the diagnostics related to the placeholders. This
ensures that live issues in an IDE like Xcode won't get spurious diagnostics
related to placeholders.
This commit also adds a new compiler option named '-fallow-editor-placeholders'
that silences the 'editor placeholder in source file' error. This is useful
for an IDE like Xcode as we don't want to display those errors in live issues.
rdar://31581400
Differential Revision: https://reviews.llvm.org/D32081
llvm-svn: 300667
Previously, if an escaped newline was followed by a newline or a nul, we'd lex
the escaped newline as a bogus space character. This led to a bunch of
different broken corner cases:
For the pattern "\\\n\0#", we would then have a (horizontal) space whose
spelling ends in a newline, and would decide that the '#' is at the start of a
line, and incorrectly start preprocessing a directive in the middle of a
logical source line. If we were already in the middle of a directive, this
would result in our attempting to process multiple directives at the same time!
This resulted in crashes, asserts, and hangs on invalid input, as discovered by
fuzz-testing.
For the pattern "\\\n" at EOF (with an implicit following nul byte), we would
produce a bogus trailing space character with spelling "\\\n". This was mostly
harmless, but would lead to clang-format getting confused and misformatting in
rare cases. We now produce a trailing EOF token with spelling "\\\n",
consistent with our handling for other similar cases -- an escaped newline is
always part of the token containing the next character, if any.
For the pattern "\\\n\n", this was somewhat more benign, but would produce an
extraneous whitespace token to clients who care about preserving whitespace.
However, it turns out that our lexing for line comments was relying on this bug
due to an off-by-one error in its computation of the end of the comment, on the
slow path where the comment might contain escaped newlines.
llvm-svn: 300515
This allows using and testing these two features separately. (noteably,
debug info is, so far as I know, always a win (basically). But function
modular codegen is currently a loss for highly optimized code - where
most of the linkonce_odr definitions are optimized away, so providing
weak_odr definitions is only overhead)
llvm-svn: 300104
Summary: When using the C preprocessor with assembly files, either with a
capital `S` file extension, or with `-xassembler-with-cpp`, the Unicode escape
sequence `\u` is ignored. The `\u` pattern can be used for expanding a macro
argument that starts with `u`.
Author: Salman Arif <salman.arif@arm.com>
Reviewers: rengolin, olista01
Reviewed By: olista01
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31765
llvm-svn: 299754
Fix the current parsing of subframeworks in modulemaps to lookup for
headers based on whether they are frameworks.
rdar://problem/30563982
llvm-svn: 298391
This reverts commit r298185, effectively reapplying r298165, after fixing the
new unit tests (PR32338). The memory buffer generator doesn't null-terminate
the MemoryBuffer it creates; this version of the commit informs getMemBuffer
about that to avoid the assert.
Original commit message follows:
----
Clang's internal build system for implicit modules uses lock files to
ensure that after a process writes a PCM it will read the same one back
in (without contention from other -cc1 commands). Since PCMs are read
from disk repeatedly while invalidating, building, and importing, the
lock is not released quickly. Furthermore, the LockFileManager is not
robust in every environment. Other -cc1 commands can stall until
timeout (after about eight minutes).
This commit changes the lock file from being necessary for correctness
to a (possibly dubious) performance hack. The remaining benefit is to
reduce duplicate work in competing -cc1 commands which depend on the
same module. Follow-up commits will change the internal build system to
continue after a timeout, and reduce the timeout. Perhaps we should
reconsider blocking at all.
This also fixes a use-after-free, when one part of a compilation
validates a PCM and starts using it, and another tries to swap out the
PCM for something new.
The PCMCache is a new type called MemoryBufferCache, which saves memory
buffers based on their filename. Its ownership is shared by the
CompilerInstance and ModuleManager.
- The ModuleManager stores PCMs there that it loads from disk, never
touching the disk if the cache is hot.
- When modules fail to validate, they're removed from the cache.
- When a CompilerInstance is spawned to build a new module, each
already-loaded PCM is assumed to be valid, and is frozen to avoid
the use-after-free.
- Any newly-built module is written directly to the cache to avoid the
round-trip to the filesystem, making lock files unnecessary for
correctness.
Original patch by Manman Ren; most testcases by Adrian Prantl!
llvm-svn: 298278
Clang's internal build system for implicit modules uses lock files to
ensure that after a process writes a PCM it will read the same one back
in (without contention from other -cc1 commands). Since PCMs are read
from disk repeatedly while invalidating, building, and importing, the
lock is not released quickly. Furthermore, the LockFileManager is not
robust in every environment. Other -cc1 commands can stall until
timeout (after about eight minutes).
This commit changes the lock file from being necessary for correctness
to a (possibly dubious) performance hack. The remaining benefit is to
reduce duplicate work in competing -cc1 commands which depend on the
same module. Follow-up commits will change the internal build system to
continue after a timeout, and reduce the timeout. Perhaps we should
reconsider blocking at all.
This also fixes a use-after-free, when one part of a compilation
validates a PCM and starts using it, and another tries to swap out the
PCM for something new.
The PCMCache is a new type called MemoryBufferCache, which saves memory
buffers based on their filename. Its ownership is shared by the
CompilerInstance and ModuleManager.
- The ModuleManager stores PCMs there that it loads from disk, never
touching the disk if the cache is hot.
- When modules fail to validate, they're removed from the cache.
- When a CompilerInstance is spawned to build a new module, each
already-loaded PCM is assumed to be valid, and is frozen to avoid
the use-after-free.
- Any newly-built module is written directly to the cache to avoid the
round-trip to the filesystem, making lock files unnecessary for
correctness.
Original patch by Manman Ren; most testcases by Adrian Prantl!
llvm-svn: 298165
in macro argument pre-expansion mode when skipping a function body
This commit fixes a token caching problem that currently occurs when clang is
skipping a function body (e.g. when looking for a code completion token) and at
the same time caching the tokens for _Pragma when lexing it in macro argument
pre-expansion mode.
When _Pragma is being lexed in macro argument pre-expansion mode, it caches the
tokens so that it can avoid interpreting the pragma immediately (as the macro
argument may not be used in the macro body), and then either backtracks over or
commits these tokens. The problem is that, when we're backtracking/committing in
such a scenario, there's already a previous backtracking position stored in
BacktrackPositions (as we're skipping the function body), and this leads to a
situation where the cached tokens from the pragma (like '(' 'string_literal'
and ')') will remain in the cached tokens array incorrectly even after they're
consumed (in the case of backtracking) or just ignored (in the case when they're
committed). Furthermore, what makes it even worse, is that because of a previous
backtracking position, the logic that deals with when should we call
ExitCachingLexMode in CachingLex no longer works for us in this situation, and
more tokens in the macro argument get cached, to the point where the EOF token
that corresponds to the macro argument EOF is cached. This problem leads to all
sorts of issues in code completion mode, where incorrect errors get presented
and code completion completely fails to produce completion results.
rdar://28523863
Differential Revision: https://reviews.llvm.org/D28772
llvm-svn: 296140
Summary: This is a patch for PR31836. As the bug replaces the path separators in the included file name with the characters following them, the test script makes sure that there's no "Ccase-insensitive-include-pr31836.h" in the warning message.
Reviewers: rsmith, eric_niebler
Reviewed By: eric_niebler
Subscribers: karies, cfe-commits
Differential Revision: https://reviews.llvm.org/D30000
llvm-svn: 295779
The Module::WithCodegen flag was only being set when the module was
parsed from a ModuleMap. Instead set it late, in the ASTWriter to match
the layer where the MODULAR_CODEGEN_DECLs list is determined (the
WithCodegen flag essentially means "are this module's decls in
MODULAR_CODEGEN_DECLs").
When simultaneous emission of AST file and modular object is implemented
this may need to change - the Module::WithCodegen flag will need to be
set earlier, and ideally the MODULAR_CODEGEN_DECLs gathering will
consult this flag (that's not possible right now since Decls destined
for an AST File don't have a Module - only if they're /read/ from a
Module is that true - I expect that would need to change as well).
llvm-svn: 293692
First pass at generating weak definitions of inline functions from module files
(& skipping (-O0) or emitting available_externally (optimizations)
definitions where those modules are used).
External functions defined in modules are emitted into the modular
object file as well (this may turn an existing ODR violation (if that
module were imported into multiple translations) into valid/linkable
code).
Internal symbols (static functions, for example) are not correctly
supported yet. The symbol will be produced, internal, in the modular
object - unreferenceable from the users.
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D28845
llvm-svn: 293456
by providing a memchr builtin that returns char* instead of void*.
Also add a __has_feature flag to indicate the presence of constexpr forms of
the relevant <string> functions.
llvm-svn: 292555
When a textual header is present inside a umbrella dir but not in the
header, we get the misleading warning:
warning: umbrella header for module 'FooFramework' does not include
header 'Baz_Private.h'
The module map in question:
framework module FooFramework {
umbrella header "FooUmbrella.h"
export *
module * { export * }
module Private {
textual header "Baz_Private.h"
}
}
Fix this by taking textual headers into account.
llvm-svn: 291794
Textual headers and builtins that are #import'd from different
modules should get re-entered when these modules are independent
from each other.
Differential Revision: https://reviews.llvm.org/D26267
rdar://problem/25881934
llvm-svn: 291644
In r276159, we started to say that a module X is defined in a pch if we specify
-fmodule-name when building the pch. This caused a regression that reports
module X is defined in both pch and pcm if we generate the pch with
-fmodule-name=X and then in a separate clang invocation, we include the pch and
also import X.pcm.
This patch adds an option CompilingPCH similar to CompilingModule. When we use
-fmodule-name=X while building a pch, modular headers in X will be textually
included and the compiler knows that we are not building module X, so we don't
put module X in SUBMODULE_DEFINITION of the pch.
Differential Revision: http://reviews.llvm.org/D28415
llvm-svn: 291465
Summary:
The module system supports accompanying a primary module (say Foo) with
an auxiliary "private" module (defined in an adjacent module.private.modulemap
file) that augments the primary module when associated private headers are
available. The feature is intended to be used to augment the primary
module with a submodule (say Foo.Private), however some users in the wild
are choosing to augment the primary module with an additional top-level module
with a "similar" name (in all cases so far: FooPrivate).
This "works" when a user of the module initially imports a private header,
such as '#import "Foo/something_private.h"' since the Foo import winds up
importing FooPrivate in passing. But if the import is subsequently recorded
in a PCH file, reloading the PCH will fail to validate because of a cross-check
that attempts to find the module.modulemap (or module.private.modulemap) using
HeaderSearch algorithm, applied to the "FooPrivate" name. Since it's stored in
Foo.framework/Modules, not FooPrivate.framework/Modules, the check fails and
the PCH is rejected.
This patch adds a compensatory workaround in the HeaderSearch algorithm
when searching (and failing to find) a module of the form FooPrivate: the
name used to derive filesystem paths is decoupled from the module name
being searched for, and if the initial search fails and the module is
named "FooPrivate", the filesystem search name is altered to remove the
"Private" suffix, and the algorithm is run a second time (still looking for
a module named FooPrivate, but looking in directories derived from Foo).
Accompanying this change is a new warning that triggers when a user loads
a module.private.modulemap that defines a top-level module with a different
name from the top-level module defined in its adjacent module.modulemap.
Reviewers: doug.gregor, manmanren, bruno
Subscribers: bruno, cfe-commits
Differential Revision: https://reviews.llvm.org/D27852
llvm-svn: 290219
Include headermaps (.hmap files) in the .cache directory and
add VFS entries. All headermaps are known after HeaderSearch
setup, collect them right after.
rdar://problem/27913709
llvm-svn: 289360
PCH files store the macro history for a given macro, and the whole history list
for one identifier is given to the Preprocessor at once via
Preprocessor::setLoadedMacroDirective(). This contained an assert that no macro
history exists yet for that identifier. That's usually true, but it's not true
for builtin macros, which are created in Preprocessor() before flags and pchs
are processed. Luckily, ASTWriter stops writing macro history lists at builtins
(see shouldIgnoreMacro() in ASTWriter.cpp), so the head of the history list was
missing for builtin macros. So make the assert weaker, and splice the history
list to the existing single define for builtins.
https://reviews.llvm.org/D27545
llvm-svn: 289228
Recover better from an incompatible .pcm file being provided by -fmodule-file=. We try to include the headers of the module textually in this case, still enforcing the modules semantic rules. In order to make that work, we need to still track that we're entering and leaving the module. Also, if the module was also marked as unavailable (perhaps because it was missing a file), we shouldn't mark the module unavailable -- we don't need the module to be complete if we're going to enter it textually.
llvm-svn: 288741
This reverts commit r288449.
I believe that this is currently faulty wrt. modules being imported
inside namespaces. Adding these lines to the new test:
namespace n {
#include "foo.h"
}
Makes it break with
fatal error: import of module 'M' appears within namespace 'n'
However, I believe it should fail with
error: redundant #include of module 'M' appears within namespace 'n'
I have tracked this down to us now inserting a tok::annot_module_begin
instead of a tok::annot_module_include in
Preprocessor::HandleIncludeDirective() and then later in
Parser::parseMisplacedModuleImport(), we hit the code path for
tok::annot_module_begin, which doesn't set FromInclude of
checkModuleImportContext to true (thus leading to the "wrong"
diagnostic).
llvm-svn: 288626
We try to include the headers of the module textually in this case, still
enforcing the modules semantic rules. In order to make that work, we need to
still track that we're entering and leaving the module. Also, if the module was
also marked as unavailable (perhaps because it was missing a file), we
shouldn't mark the module unavailable -- we don't need the module to be
complete if we're going to enter it textually.
llvm-svn: 288449
Since array parameters decay to pointers, '_Nullable' and friends
should be available for use there as well. This is especially
important for parameters that are typedefs of arrays. The unsugared
syntax for this follows the syntax for 'static'-sized arrays in C:
void test(int values[_Nullable]);
This syntax was previously accepted but the '_Nullable' (and any other
attributes) were silently discarded. However, applying '_Nullable' to
a typedef was previously rejected and is now accepted; therefore, it
may be necessary to test for the presence of this feature:
#if __has_feature(nullability_on_arrays)
One important change here is that DecayedTypes don't always
immediately contain PointerTypes anymore; they may contain an
AttributedType instead. This only affected one place in-tree, so I
would guess it's not likely to cause problems elsewhere.
This commit does not change -Wnullability-completeness just yet. I
want to think about whether it's worth doing something special to
avoid breaking existing clients that compile with -Werror. It also
doesn't change '#pragma clang assume_nonnull' behavior, which
currently treats the following two declarations as equivalent:
#pragma clang assume_nonnull begin
void test(void *pointers[]);
#pragma clang assume_nonnull end
void test(void * _Nonnull pointers[]);
This is not the desired behavior, but changing it would break
backwards-compatibility. Most likely the best answer is going to be
adding a new warning.
Part of rdar://problem/25846421
llvm-svn: 286519
which guarantee pointers are not null. These all seem to have useful
properties and correlations to document, in one case we even had it in
a comment but now it will also be an assert.
This should prevent PVS-Studio from incorrectly claiming that there are
a bunch of potential bugs here. But I feel really strongly that the
PVS-Studio warnings that pointed at this code have a far too high
false-positive rate to be entirely useful. These are just places where
there did seem to be a useful invariant to document and verify with an
assert. Several other places in the code were already correct and
already have perfectly clear code documenting and validating their
invariants, but still ran afoul of PVS-Studio.
llvm-svn: 285985
r276653 suppressed the pragma once warning when generating a PCH file.
This patch extends that to any main file for which clang is told (with
the -x option) that it's a header file. It will also suppress the
warning "#include_next in primary source file".
Differential Revision: http://reviews.llvm.org/D25989
llvm-svn: 285295
While in the area, also change some unsigned variables to size_t, and
introduce an LLVM_FALLTHROUGH instead of a comment stating that.
Differential Revision: http://reviews.llvm.org/D25982
llvm-svn: 285193
All values are returned by a method as size_t, and subsequently passed
to functions taking a size_t, or used where a size_t is also valid.
Better still, two loops (which had an unsigned), can be replaced by
a range-based for loop.
Differential Revision: http://reviews.llvm.org/D25939
llvm-svn: 285182
headers. We previously got this check backwards and treated the wrapper header
as being textual.
This is important because our wrapper headers sometimes inject macros into the
system headers that they #include_next, and sometimes replace them entirely.
llvm-svn: 285152
The 'no_undeclared_includes' attribute should be used in a module to
tell that only non-modular headers and headers from used modules are
accepted.
The main motivation behind this is to prevent dep cycles between system
libraries (such as darwin) and libc++.
Patch by Richard Smith!
llvm-svn: 284797
This assert is intended to defend against backtracking into the middle
of a sequence of tokens that is being replaced with an annotation, but
it's OK if we backtrack to the exact position of the start of the
annotation sequence. Use a <= comparison instead of <.
Fixes PR25946
llvm-svn: 284777
Summary:
This lets people link against LLVM and their own version of the UTF
library.
I determined this only affects llvm, clang, lld, and lldb by running
$ git grep -wl 'UTF[0-9]\+\|\bConvertUTF\bisLegalUTF\|getNumBytesFor' | cut -f 1 -d '/' | sort | uniq
clang
lld
lldb
llvm
Tested with
ninja lldb
ninja check-clang check-llvm check-lld
(ninja check-lldb doesn't complete for me with or without this patch.)
Reviewers: rnk
Subscribers: klimek, beanz, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D24996
llvm-svn: 282822
This is triggered when we are compiling an implementation of a module,
it has relative includes to a VFS-mapped module with umbrella headers.
Currently we will find the real path to headers under the umbrella directory,
but the umbrella directories are using virtual path.
rdar://27951255
Thanks Ben and Richard for reviewing the patch!
Differential Revision: http://reviews.llvm.org/D23858
llvm-svn: 279838
This diff reorders the fields and removes excessive padding.
This fixes the following warning:
PTHLexer.cpp:629:7: warning: Excessive padding in 'class (anonymous namespace)::PTHStatData' (14 padding bytes, where 6 is optimal). Optimal fields order: Size, ModTime, UniqueID, HasData, IsDirectory, consider reordering the fields or adding explicit padding members.
Patch by: Alexander Shaposhnikov <shal1t712@gmail.com>
Differential Revision: https://reviews.llvm.org/D23826
llvm-svn: 279607
In this mode, there is no need to load any module map and the programmer can
simply use "@import" syntax to load the module directly from a prebuilt
module path. When loading from prebuilt module path, we don't support
rebuilding of the module files and we ignore compatible configuration
mismatches.
rdar://27290316
Differential Revision: http://reviews.llvm.org/D23125
llvm-svn: 279096
trying to write out its macro graph, in case we imported a module that added
another module macro between the most recent local definition and the end of
the module.
llvm-svn: 279024
This differs from the previous version by being more careful about template
instantiation/specialization in order to prevent errors when building with
clang -Werror. Specifically:
* begin is not defined in the template and is instead instantiated when Head
is. I think the warning when we don't do that is wrong (PR28815) but for now
at least do it this way to avoid the warning.
* Instead of performing template specializations in LLVM_INSTANTIATE_REGISTRY
instead provide a template definition then do explicit instantiation. No
compiler I've tried has problems with doing it the other way, but strictly
speaking it's not permitted by the C++ standard so better safe than sorry.
Original commit message:
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
llvm-svn: 277806
This version has two fixes compared to the original:
* In Registry.h the template static members are instantiated before they are
used, as clang gives an error if you do it the other way around.
* The use of the Registry template in clang-tidy is updated in the same way as
has been done everywhere else.
Original commit message:
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
llvm-svn: 276973
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
Differential Revision: http://reviews.llvm.org/D21385
llvm-svn: 276856
The '#pragma once' directive was erroneously ignored when encountered
in the header-file specified in generate-PCH-mode. This resulted in
compile-time errors in some cases with legal code, and also a misleading
warning being produced.
Patch by Warren Ristow!
Differential Revision: http://reviews.llvm.org/D19815
llvm-svn: 276653
This patch adds a __nth_element builtin that allows fetching the n-th type of a
parameter pack with very little compile-time overhead. The patch was inspired by
r252036 and r252115 by David Majnemer, which add a similar __make_integer_seq
builtin for efficiently creating a std::integer_sequence.
Reviewed as D15421. http://reviews.llvm.org/D15421
llvm-svn: 274316
Differential Revision: http://reviews.llvm.org/D19843
Corresponding LLVM change: http://reviews.llvm.org/D19842
Re-commit after addressing issues with of generating too many warnings for Windows and asan test failures.
Patch by Eric Niebler
llvm-svn: 272562
MSVC now supports the __is_assignable type trait intrinsic,
to enable easier and more efficient implementation of the
Standard Library's is_assignable trait.
As of Visual Studio 2015 Update 3, the VC Standard Library
implementation uses the new intrinsic unconditionally.
The implementation is pretty straightforward due to the previously
existing is_nothrow_assignable and is_trivially_assignable.
We handle __is_assignable via the same code as the other two except
that we skip the extra checks for nothrow or triviality.
Patch by Dave Bartolomeo!
Differential Revision: http://reviews.llvm.org/D20492
llvm-svn: 270458
The lexer sets the end location of macro arguments incorrectly *if*,
while merging consecutive args to fit into a single SLocEntry, it finds
args which come from different macro files.
Fix the issue by using separate SLocEntries in this situation.
This fixes a code coverage crasher (rdar://problem/26181005). Because
the lexer reported end locations for certain macro args incorrectly, we
would generate bogus coverage mappings with negative line offsets.
Reviewed-by: akyrtzi
Differential Revision: http://reviews.llvm.org/D20401
llvm-svn: 270160
If we are processing a #include from a module build, we should treat it
as a system header if we're building a system module. Passing an optional
flag to HeaderSearch::LookupFile.
Before this, the testing case will crash when accessing a freed FileEntry.
rdar://26214027
llvm-svn: 269730
getModuleContainingLocation ends up on the hot-path for typical C code
which can lead to calls to getFileIDSlow.
To speed this up, short circuit inferModuleFromLocation when there
aren't any modules, implicit or otherwise.
This shaves 4-5% build time when building the linux kernel.
llvm-svn: 269687
Clang performs directory walk while searching headers inside modules by
using the ::sys::fs instead of ::vfs. This prevents any code that uses
the VFS (e.g, reproducer scripts) to actually find such headers, since
the VFS will never be searched for those.
Change these places to use vfs::recursive_directory_iterator and
vfs::directory_iterator instead.
Differential Revision: http://reviews.llvm.org/D20266
rdar://problem/25880368
llvm-svn: 269661
(1) Collect headers under inner frameworks (frameworks inside other
other frameworks).
(2) Make sure we also collect the right header files inside them.
More info on (2):
Consider a dummy framework module B, with header Frameworks/B/B.h. Now
consider that another framework A, with header Frameworks/A/A.h, has a
layout with a inner framework Frameworks/A/Frameworks/B/B.h, where the
"B/B.h" part is a symlink for Frameworks/B/B.h. Also assume that
Frameworks/A/A.h includes <B/B.h>.
When parsing header Frameworks/A/A.h, framework module lookup is
performed in search for B, and it happens that
"Frameworks/A/Frameworks/B/B.h" path is registered in the module instead
of real "Frameworks/B/B.h". This occurs because
"Frameworks/A/Frameworks/B/B.h" is scanned first by the FileManager,
when looking for inner framework modules under Frameworks/A/Frameworks.
This makes Frameworks/A/Frameworks/B/B.h the default cached named inside
the FileManager for the B.h file UID.
This leads to modules being built without consistent paths to underlying
header files. This is usually not a problem in regular compilation flow,
but it's an issue when running the crash reproducer. The issue is that
clangs collect "Frameworks/A/Frameworks/B/B.h" but not
"Frameworks/B/B.h" into the VFS, leading to err_mmap_umbrella_clash. So
make sure we also collect the original header.
Differential Revision: http://reviews.llvm.org/D20194
rdar://problem/25880368
llvm-svn: 269502
This patch corresponds to reviews:
http://reviews.llvm.org/D15120http://reviews.llvm.org/D19125
It adds support for the __float128 keyword, literals and target feature to
enable it. Based on the latter of the two aforementioned reviews, this feature
is enabled on Linux on i386/X86 as well as SystemZ.
This is also the second attempt in commiting this feature. The first attempt
did not enable it on required platforms which caused failures when compiling
type_traits with -std=gnu++11.
If you see failures with compiling this header on your platform after this
commit, it is likely that your platform needs to have this feature enabled.
llvm-svn: 268898
Use a StringRef instead of a FileEntry in the moduleMapAddHeader
callback to allow more flexibility on what to collect on further
patches. This changes the interface I introduced in r264971.
llvm-svn: 268819
Summary:
Adds a framework to enable the instrumentation pass for the new
EfficiencySanitizer ("esan") family of tools. Adds a flag for esan's
cache fragmentation tool via -fsanitize=efficiency-cache-frag.
Adds appropriate tests for the new flag.
Reviewers: eugenis, vitalybuka, aizatsky, filcab
Subscribers: filcab, kubabrecka, llvm-commits, zhaoqin, kcc
Differential Revision: http://reviews.llvm.org/D19169
llvm-svn: 267059
xmmintrin.h a bit more directed. If for whatever reason modules are enabled but
we textually include one of these headers, don't deploy the special case for
modules. To make this work cleanly, extend __building_module to be defined
even when modules is disabled.
llvm-svn: 266945
Since this patch provided support for the __float128 type but disabled it
on all platforms by default, some platforms can't compile type_traits with
-std=gnu++11 since there is a specialization with __float128.
This reverts the patch until D19125 is approved (i.e. we know which platforms
need this support enabled).
llvm-svn: 266460
This patch corresponds to review:
http://reviews.llvm.org/D15120
It adds support for the __float128 keyword, literals and a target feature to
enable it. This support is disabled by default on all targets and any target
that has support for this type is free to add it.
Based on feedback that I've received from target maintainers, this appears to
be the right thing for most targets. I have not heard from the maintainers of
X86 which I believe supports this type. I will subsequently investigate the
impact of enabling this on X86.
llvm-svn: 266186
and we fall back to textual inclusion, don't require the module as a whole to
be marked available; it's OK if some other file in the same module is missing,
just as it would be if the header were explicitly marked textual.
llvm-svn: 266113
Summary:
The parsing logic has been separated out from the macro implementation logic, leading to a number of improvements:
* Gracefully handle unexpected/invalid tokens, too few, too many and nested parameters
* Provide consistent behaviour between all built-in feature-like macros
* Simplify the implementation of macro logic
* Fix __is_identifier to correctly return '0' for non-identifiers
Reviewers: doug.gregor, rsmith
Subscribers: rsmith, cfe-commits
Differential Revision: http://reviews.llvm.org/D17149
llvm-svn: 265381
This allows plugins which add AST passes to also define pragmas to do things
like only enable certain behaviour of the AST pass in files where a certain
pragma is used.
Differential Revision: http://reviews.llvm.org/D18319
llvm-svn: 265295
This can happen as we look for '<<<<' while scanning tokens but then expect
'<<<<\n' to tell apart perforce from diff3 conflict markers. Just harden
the pointer arithmetic.
Found by libfuzzer + asan!
llvm-svn: 265125
The current ModuleDependencyCollector has a AST listener to collect
header files present in loaded modules, but this isn't enough to collect
all headers needed in the crash reproducer. One of the reasons is that
the AST writer doesn't write symbolic link header paths in the pcm modules,
this makes the listeners on the reader only able to collect the real files.
Since the module maps could contain submodules that use headers which
are symbolic links, not collecting those forbid the reproducer scripts
to regen the modules.
For instance:
usr/include/module.map:
...
module pthread {
header "pthread.h"
export *
module impl {
header "pthread_impl.h"
export *
}
}
...
usr/include/pthread/pthread_impl.h
usr/include/pthread_impl.h -> pthread/pthread_impl.h
The AST dump for the module above:
<SUBMODULE_HEADER abbrevid=6/> blob data = 'pthread_impl.h'
<SUBMODULE_TOPHEADER abbrevid=7/> blob data = '/<path_to_sdk>/usr/include/pthread/pthread_impl.h'
Note that we don't have "usr/include/pthread_impl.h" which is requested
by the module.map in case we want to reconstruct the module in the
reproducer. The reason the original symbolic link path isn't used is
because the headers are kept by name and requested through the
FileManager, which unique files and returns the real path only.
To fix that, add a callback to be invoked everytime a header is added
while parsing module maps and hook that up to the module dependecy
collector. This callback is only registered when generating the
reproducer.
Differential Revision: http://reviews.llvm.org/D18585
rdar://problem/24499339
llvm-svn: 264971
This commit adds a named argument to AvailabilityAttr, while r263652 adds an
optional string argument to __attribute__((deprecated)).
This was commited in r263687 and reverted in 263752 due to misaligned
access.
rdar://20588929
llvm-svn: 263958
This commit adds a named argument to AvailabilityAttr, while r263652 adds an
optional string argument to __attribute__((deprecated)). This enables the
compiler to provide Fix-Its for deprecated declarations.
rdar://20588929
llvm-svn: 263687
Since it's provided by the compiler. This allows a system module map
file to declare a module for it.
No test change for cstd.m, since stdatomic.h doesn't function without a
relatively complete stdint.h and stddef.h, which tests using this module
don't provide.
rdar://problem/24931246
llvm-svn: 263076
If the availability context is `FunctionTemplateDecl`, we should look
through it to the `FunctionDecl`. This prevents a diagnostic in the
following case:
class C __attribute__((unavailable));
template <class T> void foo(C&) __attribute__((unavailable));
This adds tests for availability in templates in many other cases, but
that was the only case that failed before this patch.
I added a feature `__has_feature(attribute_availability_in_templates)`
so users can test for this.
rdar://problem/24561029
llvm-svn: 262050
This reverts commit r261780. It turns out the original code was just
fine. An overload for ltrim which takes char was added but the Doxygen
docs haven't seemed to pick it up.
llvm-svn: 261784
Change getString() to return Optional<StringRef>, and change
lookupFilename() to return an empty string if either one of the prefix
and suffix can't be found.
This is a more robust follow-up to r261461, but it's still not entirely
satisfactory. Ideally we'd report that the header map is corrupt;
perhaps something for a follow-up.
llvm-svn: 261596
Switch to using `isPowerOf2_32()` to check whether the buckets are a
power of two, and as a side benefit reject loading a header map with no
buckets. This is a follow-up to r261448.
llvm-svn: 261585
If a header map file is corrupt, the strings in the string table may not
be null-terminated. The logic here previously relied on `MemoryBuffer`
always being null-terminated, but this isn't actually guaranteed by the
class AFAICT. Moreover, we're seeing a lot of crash traces at calls to
`strlen()` inside of `lookupFilename()`, so something is going wrong
there.
Instead, use `strnlen()` to get the length, and check for corruption.
Also remove code paths that could call `StringRef(nullptr)`. r261459
made these rather obvious (although they'd been there all along).
llvm-svn: 261461
This way it's easy to change HeaderMapImpl::getString() to return a
StringRef.
There's a slight change here, because I used `errs()` instead of
`dbgs()`. But `dbgs()` is more appropriate for a dump method.
llvm-svn: 261456
Check up front whether the header map buffer has space for all of its
declared buckets.
There was already a check in `getBucket()`, but it had UB (comparing
pointers that were outside of objects in the error path) and was
insufficient (only checking for a single byte of the relevant bucket).
I fixed the check, moved it to `checkHeader()`, and left a fixed version
behind as an assertion.
llvm-svn: 261449
If the number of buckets is not a power of two, immediately recognize
the header map as corrupt, rather than waiting for the first lookup. I
converted the later check to an assert.
llvm-svn: 261448
Split the implementation of `HeaderMap` into `HeaderMapImpl` so that we
can write unit tests that don't depend on the `FileManager`, and then
write a few tests that cover the types of corrupt header maps already
detected.
This also moves type and constant definitions from HeaderMap.cpp to
HeaderMapTypes.h so that the test can access them.
llvm-svn: 261446
option. Previously these options could both be used to specify that you were
compiling the implementation file of a module, with a different set of minor
bugs in each case.
This change removes -fmodule-implementation-of, and instead tracks a flag to
determine whether we're currently building a module. -fmodule-name now behaves
the same way that -fmodule-implementation-of previously did.
llvm-svn: 261372
OpenCL Extension v1.2 s9.5 allows half precision floating point
type literals with suffices h or H when cl_khr_fp16 is enabled.
Example: half x = 1.0h;
Patch by Liu Yaxun (Sam)!
Differential Revision: http://reviews.llvm.org/D16865
llvm-svn: 261084
r260925 introduced a version of the *trim methods which is preferable
when trimming a single kind of character. Update all users in clang.
llvm-svn: 260927
While this won't help fix things like the bug that r260219 addressed, it
seems like good tidy up to have anyway.
(it might be nice if "makeArrayRef" always produced a MutableArrayRef &
let it decay to an ArrayRef when needed - then I'd use that for the
MutableArrayRefs in this patch)
If we had std::dynarray I'd use that instead of unique_ptr+size_t,
ideally (but then it'd have to be threaded down through the Preprocessor
all the way - no idea how painful that would be)
llvm-svn: 260246
This patch adds the reserved operator ^^ when compiling for OpenCL (spec v1.1 s6.3.g),
which results in a more meaningful error message.
Patch by Neil Hickey!
Review: http://reviews.llvm.org/D13280
M test/SemaOpenCL/unsupported.cl
M include/clang/Basic/TokenKinds.def
M include/clang/Basic/DiagnosticParseKinds.td
M lib/Basic/OperatorPrecedence.cpp
M lib/Lex/Lexer.cpp
M lib/Parse/ParseExpr.cpp
llvm-svn: 259651
Consider the following ObjC++ snippet:
--
@protocol PA;
@protocol PB;
@class NSArray<ObjectType>;
typedef int some_t;
id<PA> FA(NSArray<id<PB>> *h, some_t group);
--
This would hit an assertion in the parser after generating an annotation token
while trying to update the token cache:
Assertion failed: (CachedTokens[CachedLexPos-1].getLastLoc() == Tok.getAnnotationEndLoc() && "The annotation should be until the most recent cached token")
...
7 clang::Preprocessor::AnnotatePreviousCachedTokens(clang::Token const&) + 494
8 clang::Parser::TryAnnotateTypeOrScopeTokenAfterScopeSpec(bool, bool, clang::CXXScopeSpec&, bool) + 1163
9 clang::Parser::TryAnnotateTypeOrScopeToken(bool, bool) + 361
10 clang::Parser::isCXXDeclarationSpecifier(clang::Parser::TPResult, bool*) + 598
...
The cached preprocessor token in this case is:
greatergreater '>>' Loc=<testcase.mm:7:24>
while the annotation ("NSArray<id<PB>>") ends at "testcase.mm:7:25", hence the
assertion.
Properly update the CachedTokens during template parsing to contain
two greater tokens instead of a greatergreater.
Differential Revision: http://reviews.llvm.org/D15173
rdar://problem/23494277
llvm-svn: 259311