The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
During simplification umax we trigger isKnownPredicate twice. As a first attempt it
tries the induction. To do that it tries to get post increment of SCEV.
Re-writing the SCEV may result in simplification of umax. If the SCEV contains a lot
of umax operations this recursion becomes very slow.
The added test demonstrates the slow behavior.
To resolve this we use only simple ways to check whether the predicate is known.
Reviewers: sanjoy, mkazantsev
Reviewed By: sanjoy
Subscribers: lebedev.ri, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D46046
llvm-svn: 331949
This patch was temporarily reverted because it has exposed bug 37229 on
PowerPC platform. The bug is unrelated to the patch and was just a general
bug in the optimization done for PowerPC platform only. The bug was fixed
by the patch rL331410.
This patch returns the disabled commit since the bug was fixed.
llvm-svn: 331427
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
The invocation of getExact in ScalarEvolution::getBackedgeTakenInfo is used
only for getting statistic and for assert.
Even if statistics is disabled, the code related to it will be eliminated
the invocation to getExact itself will not be eliminated
because it may have side-effects like creation of new SCEVs.
So do invocation only when we collect statistics or executes asserts.
Reviewers: mkazantsev, sanjoy, javed.absar
Reviewed By: javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46178
llvm-svn: 331099
Add new umin creation method which accepts a list of operands.
SCEV does not represents umin which is required in getExact, so
it transforms umin to umax with not. As a result the transformation of
tree of max to max with several operands does not work.
We just use the new introduced method for creation umin from several operands.
Reviewers: sanjoy, mkazantsev
Reviewed By: sanjoy
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D46047
llvm-svn: 331015
This reverts commit 023c8be90980e0180766196cba86f81608b35d38.
This patch triggers miscompile of zlib on PowerPC platform. Most likely it is
caused by some pre-backend PPC-specific pass, but we don't clearly know the
reason yet. So we temporally revert this patch with intention to return it
once the problem is resolved. See bug 37229 for details.
llvm-svn: 330893
In the function `simplifyOneLoop` we optimistically assume that changes in the
inner loop only affect this very loop and have no impact on its parents. In fact,
after rL329047 has been merged, we can now calculate exit counts for outer
loops which may depend on inner loops. Thus, we need to invalidate all parents
when we do something to a loop.
There is an evidence of incorrect behavior of `simplifyOneLoop`: when we insert
`SE->verify()` check in the end of this funciton, it fails on a bunch of existing
test, in particular:
LLVM :: Transforms/LoopUnroll/peel-loop-not-forced.ll
LLVM :: Transforms/LoopUnroll/peel-loop-pgo.ll
LLVM :: Transforms/LoopUnroll/peel-loop.ll
LLVM :: Transforms/LoopUnroll/peel-loop2.ll
Note that previously we have fixed issues of this variety, see rL328483.
This patch makes this function invalidate the outermost loop properly.
Differential Revision: https://reviews.llvm.org/D45937
Reviewed By: chandlerc
llvm-svn: 330576
This patch teaches SCEV how to prove implications for SCEVUnknown nodes that are Phis.
If we need to prove `Pred` for `LHS, RHS`, and `LHS` is a Phi with possible incoming values
`L1, L2, ..., LN`, then if we prove `Pred` for `(L1, RHS), (L2, RHS), ..., (LN, RHS)` then we can also
prove it for `(LHS, RHS)`. If both `LHS` and `RHS` are Phis from the same block, it is sufficient
to prove the predicate for values that come from the same predecessor block.
The typical case that it handles is that we sometimes need to prove that `Phi(Len, Len - 1) >= 0`
given that `Len > 0`. The new logic was added to `isImpliedViaOperations` and only uses it and
non-recursive reasoning to prove the facts we need, so it should not hurt compile time a lot.
Differential Revision: https://reviews.llvm.org/D44001
Reviewed By: anna
llvm-svn: 329150
The patch changes the usage of dominate to properlyDominate
to satisfy the condition !(a < a) while using std::max.
It is actually NFC due to set data structure is used to keep
the Loops and no two identical loops can be in collection.
So in reality there is no difference between usage of
dominate and properlyDominate in this particular case.
However it might be changed so it is better to fix it.
llvm-svn: 329051
Current implementation of `computeExitLimit` has a big piece of code
the only purpose of which is to prove that after the execution of this
block the latch will be executed. What it currently checks is actually a
subset of situations where the exiting block dominates latch.
This patch replaces all these checks for simple particular cases with
domination check over loop's latch which is the only necessary condition
of taking the exiting block into consideration. This change allows to
calculate exact loop taken count for simple loops like
for (int i = 0; i < 100; i++) {
if (cond) {...} else {...}
if (i > 50) break;
. . .
}
Differential Revision: https://reviews.llvm.org/D44677
Reviewed By: efriedma
llvm-svn: 329047
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer D44363 for a list of all the required patches.
Reviewers: sanjoy, dexonsmith, hfinkel, RKSimon
Reviewed By: dexonsmith
Subscribers: david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D44944
llvm-svn: 328925
Currently, `getExact` fails if it sees two exit counts in different blocks. There is
no solid reason to do so, given that we only calculate exact non-taken count
for exiting blocks that dominate latch. Using this fact, we can simply take min
out of all exits of all blocks to get the exact taken count.
This patch makes the calculation more optimistic with enforcing our assumption
with asserts. It allows us to calculate exact backedge taken count in trivial loops
like
for (int i = 0; i < 100; i++) {
if (i > 50) break;
. . .
}
Differential Revision: https://reviews.llvm.org/D44676
Reviewed By: fhahn
llvm-svn: 328611
This patch teaches `computeConstantDifference` handle calculation of constant
difference between `(X + C1)` and `(X + C2)` which is `(C2 - C1)`.
Differential Revision: https://reviews.llvm.org/D43759
Reviewed By: anna
llvm-svn: 328609
Summary:
Revert r325687 workaround for PR36032 since
a fix was committed in r326154.
Reviewers: sbaranga
Differential Revision: http://reviews.llvm.org/D44768
From: Evgeny Stupachenko <evstupac@gmail.com>
<evgeny.v.stupachenko@intel.com>
llvm-svn: 328257
This is re-land of https://reviews.llvm.org/rL327362 with a fix
and regression test.
The crash was due to it is possible that for found MDL loop,
LHS or RHS may contain an invariant unknown SCEV which
does not dominate the MDL. Please see regression
test for an example.
Reviewers: sanjoy, mkazantsev, reames
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44553
llvm-svn: 327822
Methods `computeExitLimitFromCondCached` and `computeExitLimitFromCondImpl` take
true and false branches as parameters and only use them for asserts and for identifying
whether true/false branch belongs to the loop (which can be done once earlier). This fact
complicates generalization of exit limit computation logic on guards because the guards
don't have blocks to which they go in case of failure explicitly.
The motivation of this patch is that currently this part of SCEV knows nothing about guards
and only works with explicit branches. As result, it fails to prove that a loop
for (i = 0; i < 100; i++)
guard(i < 10);
exits after 10th iteration, while in the equivalent example
for (i = 0; i < 100; i++)
if (i >= 10) break;
SCEV easily proves this fact. We are going to change it in near future, and this is why
we need to make these methods operate on more abstract level.
This patch refactors this code to get rid of these parameters as meaningless and prepare
ground for teaching these methods to work with guards as well as they work with explicit
branching instructions.
Differential Revision: https://reviews.llvm.org/D44419
llvm-svn: 327615
isAvailableAtLoopEntry duplicates logic of `properlyDominates` after checking invariance.
This patch replaces this logic with invocation of this method which is more profitable
because it supports caching.
Differential Revision: https://reviews.llvm.org/D43997
llvm-svn: 327373
It is a revert of rL327362 which causes build bot failures with assert like
Assertion `isAvailableAtLoopEntry(RHS, L) && "RHS is not available at Loop Entry"' failed.
llvm-svn: 327363
IsKnownPredicate is updated to implement the following algorithm
proposed by @sanjoy and @mkazantsev :
isKnownPredicate(Pred, LHS, RHS) {
Collect set S all loops on which either LHS or RHS depend.
If S is non-empty
a. Let PD be the element of S which is dominated by all other elements of S
b. Let E(LHS) be value of LHS on entry of PD.
To get E(LHS), we should just take LHS and replace all AddRecs that
are attached to PD on with their entry values.
Define E(RHS) in the same way.
c. Let B(LHS) be value of L on backedge of PD.
To get B(LHS), we should just take LHS and replace all AddRecs that
are attached to PD on with their backedge values.
Define B(RHS) in the same way.
d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
so we can assert on that.
e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
Return true if Pred, L, R is known from ranges, splitting etc.
}
This is follow-up for https://reviews.llvm.org/D42417.
Reviewers: sanjoy, mkazantsev, reames
Reviewed By: sanjoy, mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43507
llvm-svn: 327362
The range of SCEVUnknown Phi which merges values `X1, X2, ..., XN`
can be evaluated as `U(Range(X1), Range(X2), ..., Range(XN))`.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D43810
llvm-svn: 326418
Set default value for IgnoreOtherLoops of SCEVInitRewriter::rewrite to true
to be consistent with SCEVPostIncRewriter which does not have this parameter
but behaves as it would be true.
This is follow up for rL326067.
llvm-svn: 326174
The patch introduces the new function in ScalarEvolution to get
all loops used in specified SCEV.
This is a preparation for re-writing isKnownPredicate utility as
described in https://reviews.llvm.org/D42417.
Reviewers: sanjoy, mkazantsev, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43504
llvm-svn: 326072
The patch introduces the SCEVPostIncRewriter rewriter which
is similar to SCEVInitRewriter but rewrites AddRec with post increment
value of this AddRec.
This is a preparation for re-writing isKnownPredicate utility as
described in https://reviews.llvm.org/D42417.
Reviewers: sanjoy, mkazantsev, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43499
llvm-svn: 326071
The patch introduces an additional parameter IgnoreOtherLoops to SCEVInitRewriter.
if it is equal to true then rewriter will not invalidate result in case
SCEV depends on other loops then specified during creation.
The patch does not change the default behavior.
This is a preparation for re-writing isKnownPredicate utility as
described in https://reviews.llvm.org/D42417.
Reviewers: sanjoy, mkazantsev, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43498
llvm-svn: 326067
SCEV has multiple occurences of code when we need to prove some predicate on
every iteration of a loop and do it with invocations of couple `isLoopEntryGuardedByCond`,
`isLoopBackedgeGuardedByCond`. This patch factors out these two calls into a separate
method. It is a preparation step to extend this logic: it is not the only way how we can prove
such conditions.
Differential Revision: https://reviews.llvm.org/D43373
llvm-svn: 325745
of turning SCEVUnknowns of PHIs into AddRecExprs.
This feature is now hidden behind the -scev-version-unknown flag.
Fixes PR36032 and PR35432.
llvm-svn: 325687
There is a more powerful but still simple function `isKnownViaSimpleReasoning ` that
does constant range check and few more additional checks. We use it some places (e.g.
when proving implications) and in some other places we only check constant ranges.
Currently, indvar simplifier fails to remove the check in following loop:
int inc = ...;
for (int i = inc, j = inc - 1; i < 200; ++i, ++j)
if (i > j) { ... }
This patch replaces all usages of `isKnownPredicateViaConstantRanges` with
`isKnownViaSimpleReasoning` to have smarter proofs. In particular, it fixes the
case above.
Reviewed-By: sanjoy
Differential Revision: https://reviews.llvm.org/D43175
llvm-svn: 325214
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
The current implementation of `getPostIncExpr` invokes `getAddExpr` for two recurrencies
and expects that it always returns it a recurrency. But this is not guaranteed to happen if we
have reached max recursion depth or refused to make SCEV simplification for other reasons.
This patch changes its implementation so that now it always returns SCEVAddRec without
relying on `getAddExpr`.
Differential Revision: https://reviews.llvm.org/D42953
llvm-svn: 324866
The failures happened because of assert which was overconfident about
SCEV's proving capabilities and is generally not valid.
Differential Revision: https://reviews.llvm.org/D42835
llvm-svn: 324473
Sometimes `isLoopEntryGuardedByCond` cannot prove predicate `a > b` directly.
But it is a common situation when `a >= b` is known from ranges and `a != b` is
known from a dominating condition. Thia patch teaches SCEV to sum these facts
together and prove strict comparison via non-strict one.
Differential Revision: https://reviews.llvm.org/D42835
llvm-svn: 324453
ScalarEvolution::isKnownPredicate invokes isLoopEntryGuardedByCond without check
that SCEV is available at entry point of the loop. It is incorrect and fixed by patch.
To bugs additionally fixed:
assert is moved after the check whether loop is not a nullptr.
Usage of isLoopEntryGuardedByCond in ScalarEvolution::isImpliedCondOperandsViaNoOverflow
is guarded by isAvailableAtLoopEntry.
Reviewers: sanjoy, mkazantsev, anna, dorit, reames
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42417
llvm-svn: 324204
ScalarEvolution::isKnownPredicate invokes isLoopEntryGuardedByCond without check
that SCEV is available at entry point of the loop. It is incorrect and fixed by patch.
Reviewers: sanjoy, mkazantsev, anna, dorit
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42165
llvm-svn: 323077
SCEV tracks the correspondence of created SCEV to original instruction.
However during creation of SCEV it is possible that nuw/nsw/exact flags are
lost.
As a result during expansion of the SCEV the instruction with nuw/nsw/exact
will be used where it was expected and we produce poison incorreclty.
Reviewers: sanjoy, mkazantsev, sebpop, jbhateja
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41578
llvm-svn: 322058
This is fix for the crash caused by ScalarEvolution::getTruncateExpr.
It expects that if it checked the condition that SCEV is not in UniqueSCEVs cache in
the beginning that it will not be there inside this method.
However during recursion and transformation/simplification for sub expression,
it is possible that these modifications will end up with the same SCEV as we started from.
So we must always check whether SCEV is in cache and do not insert item if it is already there.
Reviewers: sanjoy, mkazantsev, craig.topper
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41380
llvm-svn: 321472