copy-list-initialization (and doesn't add an additional copy step):
Fill in the ListInitialization bit when creating a CXXConstructExpr. Use it
when instantiating initializers in order to correctly handle instantiation of
copy-list-initialization. Teach TreeTransform that function arguments are
initializations, and so need this special treatment too. Finally, remove some
hacks which were working around SubstInitializer's shortcomings.
llvm-svn: 170489
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
where an attribute is attached to a forward declaration of a template function,
and refers to parameters of that declaration, but is then inherited by the
definition of that function. When the definition is instantiated, the
parameter references need to be remapped.
llvm-svn: 164710
enough information so we can mangle them correctly in cases involving
dependent parameter types. (This specifically impacts cases involving
null pointers and cases involving parameters of reference type.)
Fix the mangler to use this information instead of trying to scavenge
it out of the parameter declaration.
<rdar://problem/12296776>.
llvm-svn: 164656
elaborated type specifier in template instantiation: such a specifier is always
valid because it must be specified within the definition of the type.
llvm-svn: 162068
things going on here that were problematic:
- We were missing the actual access check, or rather, it was suppressed
on account of being a redeclaration lookup.
- The access check would naturally happen during delay, which isn't
appropriate in this case.
- We weren't actually emitting dependent diagnostics associated with
class templates, which was unfortunate.
- Access was being propagated incorrectly for friend method declarations
that couldn't be matched at parse-time.
llvm-svn: 161652
a defaulted special member function until the exception specification is needed
(using the same criteria used for the delayed instantiation of exception
specifications for function temploids).
EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like
EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to
resolve the exception specification.
This is enabled for all C++ modes: it's a little faster in the case where the
exception specification isn't used, allows our C++11-in-C++98 extensions to
work, and is still correct for C++98, since in that mode the computation of the
exception specification can't fail.
The diagnostics here aren't great (in particular, we should include implicit
evaluation of exception specifications for defaulted special members in the
template instantiation backtraces), but they're not much worse than before.
Our approach to the problem of cycles between in-class initializers and the
exception specification for a defaulted default constructor is modified a
little by this change -- we now reject any odr-use of a defaulted default
constructor if that constructor uses an in-class initializer and the use is in
an in-class initialzer which is declared lexically earlier. This is a closer
approximation to the current draft solution in core issue 1351, but isn't an
exact match (but the current draft wording isn't reasonable, so that's to be
expected).
llvm-svn: 160847
Rather than adding a ContainsUnexpandedParameterPack bit to essentially every
AST node, we tunnel the bit directly up to the surrounding lambda expression
when we reach a context where an unexpanded pack can not normally appear.
Thus any statement or declaration within a lambda can now potentially contain
an unexpanded parameter pack.
llvm-svn: 160705
as an array of its base class TemplateArgument. Switch the const
TemplateArgument* parameters of InstantiatingTemplate's constructors to
ArrayRef<TemplateArgument> to prevent this from happening again in the future.
llvm-svn: 160245
* When substituting a reference to a non-type template parameter pack where the
corresponding argument is a pack expansion, transform into an expression
which contains an unexpanded parameter pack rather than into an expression
which contains a pack expansion. This causes the SubstNonTypeTemplateParmExpr
to be inside the PackExpansionExpr, rather than outside, so the expression
still looks like a pack expansion and can be deduced.
* Teach MarkUsedTemplateParameters that we can deduce a reference to a template
parameter if it's wrapped in a SubstNonTypeTemplateParmExpr (such nodes are
added during alias template substitution).
llvm-svn: 159922
-ftemplate-depth limit. There are various ways to get an infinite (or merely
huge) stack of substitutions with no intervening instantiations. This is also
consistent with gcc's behavior.
llvm-svn: 159907
template instantiation. I wasn't able to reproduce this down to
anything small enough to put in our test suite, but it's "obviously"
okay to set the invalid bit earlier and precludes a
known-broken-but-not-marked-broken class from being used elsewhere.
llvm-svn: 159584
* Escape #, < and @ symbols where Doxygen would try to interpret them;
* Fix several function param documentation where names had got out of sync;
* Delete param documentation referring to parameters that no longer exist.
llvm-svn: 158472
I broke this in r155838 by not actually instantiating non-dependent default arg
expressions. The motivation for that change was to avoid producing duplicate
conversion warnings for such default args (we produce them once when we parse
the template - there's no need to produce them at each instantiation) but
without actually instantiating the default arg, things break in weird ways.
Technically, I think we could still get the right diagnostic experience without
the bugs if we instantiated the non-dependent args (for non-dependent params
only) immediately, rather than lazily. But I'm not sure if such a refactoring/
change would be desirable so here's the conservative fix for now.
llvm-svn: 155893
Apparently we weren't checking default arguments when they were instantiated.
This adds the check, fixes the lack of instantiation caching (which seems like
it was mostly implemented but just missed the last step), and avoids
implementing non-dependent default args (for non-dependent parameter types) as
uninstantiated default arguments (so that we don't warn once for every
instantiation when it's not instantiation dependent).
Reviewed by Richard Smith.
llvm-svn: 155838
We have a new flavor of exception specification, EST_Uninstantiated. A function
type with this exception specification carries a pointer to a FunctionDecl, and
the exception specification for that FunctionDecl is instantiated (if needed)
and used in the place of the function type's exception specification.
When a function template declaration with a non-trivial exception specification
is instantiated, the specialization's exception specification is set to this
new 'uninstantiated' kind rather than being instantiated immediately.
Expr::CanThrow has migrated onto Sema, so it can instantiate exception specs
on-demand. Also, any odr-use of a function triggers the instantiation of its
exception specification (the exception specification could be needed by IRGen).
In passing, fix two places where a DeclRefExpr was created but the corresponding
function was not actually marked odr-used. We used to get away with this, but
don't any more.
Also fix a bug where instantiating an exception specification which refers to
function parameters resulted in a crash. We still have the same bug in default
arguments, which I'll be looking into next.
This, plus a tiny patch to fix libstdc++'s common_type, is enough for clang to
parse (and, in very limited testing, support) all of libstdc++4.7's standard
headers.
llvm-svn: 154886
in the declaration of a non-static member function after the
(optional) cv-qualifier-seq, which in practice means in the exception
specification and late-specified return type.
The new scheme here used to manage 'this' outside of a member function
scope is more general than the Scope-based mechanism previously used
for non-static data member initializers and late-parsesd attributes,
because it can also handle the cv-qualifiers on the member
function. Note, however, that a separate pass is required for static
member functions to determine whether 'this' was used, because we
might not know that we have a static function until after declaration
matching.
Finally, this introduces name mangling for 'this' and for the implicit
'this', which is intended to match GCC's mangling. Independent
verification for the new mangling test case would be appreciated.
Fixes PR10036 and PR12450.
llvm-svn: 154799
scoped enumeration members. Later uses of an enumeration temploid as a nested
name specifier should cause its instantiation. Plus some groundwork for
explicit specialization of member enumerations of class templates.
llvm-svn: 152750
expressions. This is mostly a simple refact, splitting the main "start
a lambda expression" function into smaller chunks that are driven
either from the parser (Sema::ActOnLambdaExpr) or during AST
transformation (TreeTransform::TransformLambdaExpr). A few minor
interesting points:
- Added new entry points for TreeTransform, so that we can
explicitly establish the link between the lambda closure type in the
template and the lambda closure type in the instantiation.
- Added a bit into LambdaExpr specifying whether it had an explicit
result type or not. We should have had this anyway.
This code is 'lightly' tested.
llvm-svn: 150417
instead of having a special-purpose function.
- ActOnCXXDirectInitializer, which was mostly duplication of
AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days
ago), is dropped completely.
- MultiInitializer, which was an ugly hack I added, is dropped again.
- We now have the infrastructure in place to distinguish between
int x = {1};
int x({1});
int x{1};
-- VarDecl now has getInitStyle(), which indicates which of the above was used.
-- CXXConstructExpr now has a flag to indicate that it represents list-
initialization, although this is not yet used.
- InstantiateInitializer was renamed to SubstInitializer and simplified.
- ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which
always produces a ParenListExpr. Placed that so far failed to convert that
back to a ParenExpr containing comma operators have been fixed. I'm pretty
sure I could have made a crashing test case before this.
The end result is a (I hope) considerably cleaner design of initializers.
More importantly, the fact that I can now distinguish between the various
initialization kinds means that I can get the tricky generalized initializer
test cases Johannes Schaub supplied to work. (This is not yet done.)
This commit passed self-host, with the resulting compiler passing the tests. I
hope it doesn't break more complicated code. It's a pretty big change, but one
that I feel is necessary.
llvm-svn: 150318
to the pattern template that it came from, otherwise we had this situation:
template <typename T1, typename T2>
struct S {
};
template <typename T>
struct S<T, int> {
};
void f() {
S<int, int> s; // location of declaration "S<int, int>" was of "S<T1, T2>" not "S<T, int>"
}
llvm-svn: 150290
iff its substitution contains an unexpanded parameter pack. This has the effect
that we now reject declarations such as this (which we used to crash when
expanding):
template<typename T> using Int = int;
template<typename ...Ts> void f(Int<Ts> ...ints);
The standard is inconsistent on how this case should be treated.
llvm-svn: 148905
we have a redeclarable type, and only use the new virtual versions
(getPreviousDeclImpl() and getMostRecentDeclImpl()) when we don't have
that type information. This keeps us from penalizing users with strict
type information (and is the moral equivalent of a "final" method).
Plus, settle on the names getPreviousDecl() and getMostRecentDecl()
throughout.
llvm-svn: 148187