template<typename T>
struct X {
struct Inner;
};
template struct X<int>::Inner;
This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>.
This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).
Stuart vouched for me. Blame him.
llvm-svn: 71756
template class X<int>;
This also cleans up the propagation of template information through
declaration parsing, which is used to improve some diagnostics.
llvm-svn: 71608
parse just a single declaration and provide a reasonable diagnostic
when the "only one declarator per template declaration" rule is
violated. This eliminates some ugly, ugly hackery where we used to
require thatn the layout of a DeclGroup of a single element be the
same as the layout of a single declaration.
llvm-svn: 71596
'objc_ownership_cfretain' -> 'cf_ownership_retain'
'objc_ownership_cfrelease' -> 'cf_ownership_release'
Motivation: Core Foundation objects can be used in isolation from Objective-C,
and this forces users to reason about the separate semantics of CF objects. More
Sema support pending.
llvm-svn: 70884
return type and the selector. This is inconsistent with C functions
(where such attributes would be placed on the return type, not the the
FunctionDecl), and is inconsistent with what people are use to seeing.
llvm-svn: 70878
appear between the return type and the selector. This is a separate code path
from regular attribute processing, as we only want to (a) accept only a specific
set of attributes in this place and (b) want to distinguish to clients the
context in which an attribute was added to an ObjCMethodDecl.
Currently, the attribute 'objc_ownership_returns' is the only attribute that
uses this new feature. Shortly I will add a warning for 'objc_ownership_returns'
to be placed at the end of a method declaration.
llvm-svn: 70504
type and argument types are missing, and let return type deduction
happen before we give errors for returning from a noreturn block.
Radar 6441502
llvm-svn: 70413
that if we're going to print an extension warning anyway,
there's no point to changing behavior based on NoExtensions: it will
only make error recovery worse.
Note that this doesn't cause any behavior change because NoExtensions
isn't used by the current front-end. I'm still considering what to do about
the remaining use of NoExtensions in IdentifierTable.cpp.
llvm-svn: 70273
as 'objc_ownership_cfretain' except that the method acts like a CFRetain instead
of a [... retain] (important in GC modes). Checker support is wired up, but
currently only for Objective-C message expressions (not function calls).
llvm-svn: 70218
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
to the checker yet, but essentially it allows a user to specify that an
Objective-C method or C function increments the reference count of a passed
object.
llvm-svn: 70005
up to the checker yet, but essentially it allows a user to specify that an
Objective-C method or C function returns an owned an Objective-C object.
llvm-svn: 70001
by correctly propagating the fact that the type was invalid up to the
attributeRuns decl, then returning an ExprError when attributeRuns is
formed (like we do for normal declrefexprs).
llvm-svn: 69998
for scoping to match C99 even when in C89 mode. This patch fixes this
(eliminating a "redefinition of thisKey" error), and also prevents non-sensical
diagnostics in -pedantic mode like this:
t.m:7:8: warning: variable declaration in for loop is a C99-specific feature
for (id thisKey in keys) ;
^
llvm-svn: 69760
Remove an atrocious amount of trailing whitespace in the overloaded operator mangler. Sorry, couldn't help myself.
Change the DeclType parameter of Sema::CheckReferenceInit to be passed by value instead of reference. It wasn't changed anywhere.
Let the parser handle C++'s irregular grammar around assignment-expression and conditional-expression.
And finally, the reason for all this stuff: implement C++ semantics for the conditional operator. The implementation is complete except for determining lvalueness.
llvm-svn: 69299
with other diagnostic mapping. In the new scheme, -Wfoo or -Wno-foo or
-Werror=foo all override the -pedantic options, and __extension__
robustly silences all extension diagnostics in their scope.
An added bonus of this change is that MAP_DEFAULT goes away, meaning that
per-diagnostic mapping information can now be stored in 2 bits, doubling
the density of the Diagnostic::DiagMapping array. This also
substantially simplifies Diagnostic::getDiagnosticLevel.
OTOH, this temporarily introduces some "macro intensive" code in
Diagnostic.cpp. This will be addressed in a later patch.
llvm-svn: 69154
nested name specifiers. Now we emit stuff like:
t.cpp:8:13: error: unknown type name 'X'
static foo::X P;
~~~~ ^
instead of:
t.cpp:8:16: error: invalid token after top level declarator
static foo::X P;
^
This is inspired by a really awful error message I got from
g++ when I misspelt diag::kind as diag::Kind.
llvm-svn: 69086
that I noticed working on other things.
Instead of emitting:
t2.cc:1:8: error: use of undeclared identifier 'g'
int x(*g);
^
t2.cc:1:10: error: expected ')'
int x(*g);
^
t2.cc:1:6: note: to match this '('
int x(*g);
^
We now only emit:
t2.cc:1:7: warning: type specifier missing, defaults to 'int'
int x(*g);
^
Note that the example in SemaCXX/nested-name-spec.cpp:f4 is still
not great, we now produce both of:
void f4(undef::C); // expected-error {{use of undeclared identifier 'undef'}} \
expected-error {{variable has incomplete type 'void'}}
The second diagnostic should be silenced by something getting marked invalid.
I don't plan to fix this though.
llvm-svn: 68919
struct xyz { int y; };
enum abc { ZZZ };
static xyz b;
abc c;
we used to produce:
t2.c:4:8: error: unknown type name 'xyz'
static xyz b;
^
t2.c:5:1: error: unknown type name 'abc'
abc c;
^
we now produce:
t2.c:4:8: error: use of tagged type 'xyz' without 'struct' tag
static xyz b;
^
struct
t2.c:5:1: error: use of tagged type 'abc' without 'enum' tag
abc c;
^
enum
GCC produces the normal:
t2.c:4: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘b’
t2.c:5: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘c’
rdar://6783347
llvm-svn: 68914
which tries to do better error recovery when it is "obvious" that an
identifier is a mis-typed typename. In this case, we try to parse
it as a typename instead of as the identifier in a declarator, which
gives us several options for better error recovery and immediately
makes diagnostics more useful. For example, we now produce:
t.c:4:8: error: unknown type name 'foo_t'
static foo_t a = 4;
^
instead of:
t.c:4:14: error: invalid token after top level declarator
static foo_t a = 4;
^
Also, since we now parse "a" correctly, we make a decl for it,
preventing later uses of 'a' from emitting things like:
t.c:12:20: error: use of undeclared identifier 'a'
int bar() { return a + b; }
^
I'd really appreciate any scrutiny possible on this, it
is a tricky area.
llvm-svn: 68911
Implement the rvalue reference overload dance for returning local objects. Returning a local object first tries to find a move constructor now.
The error message when no move constructor is defined (or is not applicable) and the copy constructor is deleted is quite ugly, though.
llvm-svn: 68902
down to the ActionBase class. This eliminates dependencies of (e.g.)
DeclSpec.h on Action.h, meaning that action.h can now include these
headers and use their types directly in the actions interfaces.
This is a refactoring to support a future change, no functionality
change.
llvm-svn: 68869
clients of the analyzer to designate custom assertion routines as "noreturn"
functions from the analyzer's perspective but not the compiler's.
llvm-svn: 68746
of the range is now the ';' location. For something like this:
$ cat t2.c
#define bool int
void f(int x, int y) {
bool b = !x && y;
}
We used to produce:
$ clang-cc t2.c -ast-dump
typedef char *__builtin_va_list;
void f(int x, int y)
(CompoundStmt 0x2201f10 <t2.c:3:22, line:5:1>
(DeclStmt 0x2201ef0 <line:2:14> <----
0x2201a20 "int b =
(BinaryOperator 0x2201ed0 <line:4:10, col:16> 'int' '&&'
(UnaryOperator 0x2201e90 <col:10, col:11> 'int' prefix '!'
(DeclRefExpr 0x2201c90 <col:11> 'int' ParmVar='x' 0x2201a50))
(DeclRefExpr 0x2201eb0 <col:16> 'int' ParmVar='y' 0x2201e10))")
Now we produce:
$ clang-cc t2.c -ast-dump
typedef char *__builtin_va_list;
void f(int x, int y)
(CompoundStmt 0x2201f10 <t2.c:3:22, line:5:1>
(DeclStmt 0x2201ef0 <line:2:14, line:4:17> <------
0x2201a20 "int b =
(BinaryOperator 0x2201ed0 <col:10, col:16> 'int' '&&'
(UnaryOperator 0x2201e90 <col:10, col:11> 'int' prefix '!'
(DeclRefExpr 0x2201c90 <col:11> 'int' ParmVar='x' 0x2201a50))
(DeclRefExpr 0x2201eb0 <col:16> 'int' ParmVar='y' 0x2201e10))")
llvm-svn: 68288
failures that involve malformed types, e.g., "typename X::foo" where
"foo" isn't a type, or "std::vector<void>" that doens't instantiate
properly.
Similarly, be a bit smarter in our handling of ambiguities that occur
in Sema::getTypeName, to eliminate duplicate error messages about
ambiguous name lookup.
This eliminates two XFAILs in test/SemaCXX, one of which was crying
out to us, trying to tell us that we were producing repeated error
messages.
llvm-svn: 68251
within nested-name-specifiers, e.g., for the "apply" in
typename MetaFun::template apply<T1, T2>::type
At present, we can't instantiate these nested-name-specifiers, so our
testing is sketchy.
llvm-svn: 68081
representation handles the various ways in which one can name a
template, including unqualified references ("vector"), qualified
references ("std::vector"), and dependent template names
("MetaFun::template apply").
One immediate effect of this change is that the representation of
nested-name-specifiers in type names for class template
specializations (e.g., std::vector<int>) is more accurate. Rather than
representing std::vector<int> as
std::(vector<int>)
we represent it as
(std::vector)<int>
which more closely follows the C++ grammar.
Additionally, templates are no longer represented as declarations
(DeclPtrTy) in Parse-Sema interactions. Instead, I've introduced a new
OpaquePtr type (TemplateTy) that holds the representation of a
TemplateName. This will simplify the handling of dependent
template-names, once we get there.
llvm-svn: 68074
productions (except the already broken ObjC cases like @class X,Y;) in
the parser that can produce more than one Decl return a DeclGroup instead
of a Decl, etc.
This allows elimination of the Decl::NextDeclarator field, and exposes
various clients that should look at all decls in a group, but which were
only looking at one (such as the dumper, printer, etc). These have been
fixed.
Still TODO:
1) there are some FIXME's in the code about potentially using
DeclGroup for better location info.
2) ParseObjCAtDirectives should return a DeclGroup due to @class etc.
3) I'm not sure what is going on with StmtIterator.cpp, or if it can
be radically simplified now.
4) I put a truly horrible hack in ParseTemplate.cpp.
I plan to bring up #3/4 on the mailing list, but don't plan to tackle
#1/2 in the short term.
llvm-svn: 68002
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
llvm-svn: 67952
instantiation for C++ typename-specifiers such as
typename T::type
The parsing of typename-specifiers is relatively easy thanks to
annotation tokens. When we see the "typename", we parse the
typename-specifier and produce a typename annotation token. There are
only a few places where we need to handle this. We currently parse the
typename-specifier form that terminates in an identifier, but not the
simple-template-id form, e.g.,
typename T::template apply<U, V>
Parsing of nested-name-specifiers has a similar problem, since at this
point we don't have any representation of a class template
specialization whose template-name is unknown.
Semantic analysis is only partially complete, with some support for
template instantiation that works for simple examples.
llvm-svn: 67875
class C {
C() { }
int a;
};
C::C() : a(10) { }
We also diagnose when initializers are used on declarations that aren't constructors:
t.cpp:1:10: error: only constructors take base initializers
void f() : a(10) { }
^
Doug and/or Sebastian: I'd appreciate a review, especially the nested-name-spec test results (from the looks of it we now match gcc in that test.)
llvm-svn: 67672
failure to perform a declaration. Instead, explicitly note semantic
failures that occur during template parsing with a DeclResult. Fixes
PR3872.
llvm-svn: 67659
qualified name, e.g.,
foo::x
so that we retain the nested-name-specifier as written in the source
code and can reproduce that qualified name when printing the types
back (e.g., in diagnostics). This is PR3493, which won't be complete
until finished the other tasks mentioned near the end of this commit.
The parser's representation of nested-name-specifiers, CXXScopeSpec,
is now a bit fatter, because it needs to contain the scopes that
precede each '::' and keep track of whether the global scoping
operator '::' was at the beginning. For example, we need to keep track
of the leading '::', 'foo', and 'bar' in
::foo::bar::x
The Action's CXXScopeTy * is no longer a DeclContext *. It's now the
opaque version of the new NestedNameSpecifier, which contains a single
component of a nested-name-specifier (either a DeclContext * or a Type
*, bitmangled).
The new sugar type QualifiedNameType composes a sequence of
NestedNameSpecifiers with a representation of the type we're actually
referring to. At present, we only build QualifiedNameType nodes within
Sema::getTypeName. This will be extended to other type-constructing
actions (e.g., ActOnClassTemplateId).
Also on the way: QualifiedDeclRefExprs will also store a sequence of
NestedNameSpecifiers, so that we can print out the property
nested-name-specifier. I expect to also use this for handling
dependent names like Fibonacci<I - 1>::value.
llvm-svn: 67265
diagnostics. This builds on the patch that Sebastian committed and
then revert. Major differences are:
- We don't remove or use the current ".def" files. Instead, for now,
we just make sure that we're building the ".inc" files.
- Fixed CMake makefiles to run TableGen and build the ".inc" files
when needed. Tested with both the Xcode and Makefile generators
provided by CMake, so it should be solid.
- Fixed normal makefiles to handle out-of-source builds that involve
the ".inc" files.
I'll send a separate patch to the list with Sebastian's changes that
eliminate the use of the .def files.
llvm-svn: 67058
Introduce a new PrettyStackTraceDecl.
Use it to add the top level LLVM IR generation stuff in
Backend.cpp to stack traces. We now get crashes like:
Stack dump:
0. Program arguments: clang t.c -emit-llvm
1. <eof> parser at end of file
2. t.c:1:5: LLVM IR generation of declaration 'a'
Abort
for IR generation crashes.
llvm-svn: 66153
For example:
Stack dump:
0. Program arguments: clang t.cpp
1. t.cpp:4:8: current parser token: ';'
2. t.cpp:3:1: parsing struct/union/class body 'x'
Abort
It is weird that the parser is always "underneath" any parse context
actions, but the parser is created first.
llvm-svn: 66148
like this:
Stack dump:
0. using-directive.cpp:9:14: in compound statement ('{}')
1. using-directive.cpp:9:14: parsing function body 'A::B::f'
2. using-directive.cpp:7:3: parsing namespace 'A::B'
3. using-directive.cpp:5:1: parsing namespace 'A'
4. clang using-directive.cpp
Abort
for testcase like like:
namespace A {
short i;
namespace B {
long i;
void f() { <<crash>>
llvm-svn: 66123
parser. For example, we now print out:
0. t.c:5:10: in compound statement {}
1. t.c:3:12: in compound statement {}
2. clang t.c -fsyntax-only
llvm-svn: 66108
multiple sequential case statements instead of doing it with recursion. This
fixes a problem where we run out of stack space parsing 100K directly nested
cases.
There are a couple other problems that prevent this from being useful in
practice (right now the example only parses correctly with -disable-free and
doesn't work with -emit-llvm), but this is a start.
I'm not including a testcase because it is large and uninteresting for
regtesting.
Sebastian, I would appreciate it if you could scrutinize the smart pointer
gymnastics I do.
llvm-svn: 66011
Also necessary to fix:
<rdar://problem/6632061> [sema] non object types should not be allowed in @catch statements
<rdar://problem/6252237> [sema] qualified id should be disallowed in @catch statements
llvm-svn: 65964
know how to recover from an error, we can attach a hint to the
diagnostic that states how to modify the code, which can be one of:
- Insert some new code (a text string) at a particular source
location
- Remove the code within a given range
- Replace the code within a given range with some new code (a text
string)
Right now, we use these hints to annotate diagnostic information. For
example, if one uses the '>>' in a template argument in C++98, as in
this code:
template<int I> class B { };
B<1000 >> 2> *b1;
we'll warn that the behavior will change in C++0x. The fix is to
insert parenthese, so we use code insertion annotations to illustrate
where the parentheses go:
test.cpp:10:10: warning: use of right-shift operator ('>>') in template
argument will require parentheses in C++0x
B<1000 >> 2> *b1;
^
( )
Use of these annotations is partially implemented for HTML
diagnostics, but it's not (yet) producing valid HTML, which may be
related to PR2386, so it has been #if 0'd out.
In this future, we could consider hooking this mechanism up to the
rewriter to actually try to fix these problems during compilation (or,
after a compilation whose only errors have fixes). For now, however, I
suggest that we use these code modification hints whenever we can, so
that we get better diagnostics now and will have better coverage when
we find better ways to use this information.
This also fixes PR3410 by placing the complaint about missing tokens
just after the previous token (rather than at the location of the next
token).
llvm-svn: 65570
vector<vector<double>> Matrix;
In C++98/03, this token always means "right shift". However, if we're in
a context where we know that it can't mean "right shift", provide a
friendly reminder to put a space between the two >'s and then treat it
as two >'s as part of recovery.
In C++0x, this token is always broken into two '>' tokens.
llvm-svn: 65484
std::vector<int>::allocator_type
When we parse a template-id that names a type, it will become either a
template-id annotation (which is a parsed representation of a
template-id that has not yet been through semantic analysis) or a
typename annotation (where semantic analysis has resolved the
template-id to an actual type), depending on the context. We only
produce a type in contexts where we know that we only need type
information, e.g., in a type specifier. Otherwise, we create a
template-id annotation that can later be "upgraded" by transforming it
into a typename annotation when the parser needs a type. This occurs,
for example, when we've parsed "std::vector<int>" above and then see
the '::' after it. However, it means that when writing something like
this:
template<> class Outer::Inner<int> { ... };
We have two tokens to represent Outer::Inner<int>: one token for the
nested name specifier Outer::, and one template-id annotation token
for Inner<int>, which will be passed to semantic analysis to define
the class template specialization.
Most of the churn in the template tests in this patch come from an
improvement in our error recovery from ill-formed template-ids.
llvm-svn: 65467
us whether there was an error in trying to parse a type-name (type-id
in C++). This allows propagation of errors further in the compiler,
suppressing more bogus error messages.
llvm-svn: 64922
any named parameters, e.g., this is accepted in C:
void f(...) __attribute__((overloadable));
although this would be rejected:
void f(...);
To do this, moved the checking of the "ellipsis without any named
arguments" condition from the parser into Sema (where it belongs anyway).
llvm-svn: 64902
specialization of class templates, e.g.,
template<typename T> class X;
template<> class X<int> { /* blah */ };
Each specialization is a different *Decl node (naturally), and can
have different members. We keep track of forward declarations and
definitions as for other class/struct/union types.
This is only the basic framework: we still have to deal with checking
the template headers properly, improving recovery when there are
failures, handling nested name specifiers, etc.
llvm-svn: 64848
1) implement parser and sema support for reading and verifying attribute(warnunusedresult).
2) rename hasLocalSideEffect to isUnusedResultAWarning, inverting the sense
of its result.
3) extend isUnusedResultAWarning to directly return the loc and range
info that should be reported to the user. Make it substantially more
precise in some cases than what was previously reported.
4) teach isUnusedResultAWarning about CallExpr to decls that are
pure/const/warnunusedresult, fixing a fixme.
5) change warn_attribute_wrong_decl_type to not pass in english strings, instead,
pass in integers and use %select.
llvm-svn: 64543
This commit adds a new attribute, "overloadable", that enables C++
function overloading in C. The attribute can only be added to function
declarations, e.g.,
int *f(int) __attribute__((overloadable));
If the "overloadable" attribute exists on a function with a given
name, *all* functions with that name (and in that scope) must have the
"overloadable" attribute. Sets of overloaded functions with the
"overloadable" attribute then follow the normal C++ rules for
overloaded functions, e.g., overloads must have different
parameter-type-lists from each other.
When calling an overloaded function in C, we follow the same
overloading rules as C++, with three extensions to the set of standard
conversions:
- A value of a given struct or union type T can be converted to the
type T. This is just the identity conversion. (In C++, this would
go through a copy constructor).
- A value of pointer type T* can be converted to a value of type U*
if T and U are compatible types. This conversion has Conversion
rank (it's considered a pointer conversion in C).
- A value of type T can be converted to a value of type U if T and U
are compatible (and are not both pointer types). This conversion
has Conversion rank (it's considered to be a new kind of
conversion unique to C, a "compatible" conversion).
Known defects (and, therefore, next steps):
1) The standard-conversion handling does not understand conversions
involving _Complex or vector extensions, so it is likely to get
these wrong. We need to add these conversions.
2) All overloadable functions with the same name will have the same
linkage name, which means we'll get a collision in the linker (if
not sooner). We'll need to mangle the names of these functions.
llvm-svn: 64336
arguments. This commit covers checking and merging default template
arguments from previous declarations, but it does not cover the actual
use of default template arguments when naming class template
specializations.
llvm-svn: 64229
disambiguation contexts, so that we properly parse template arguments
such as
A<int()>
as type-ids rather than as expressions. Since this can be confusing
(especially when the template parameter is a non-type template
parameter), we try to give a friendly error message.
Almost, eliminate a redundant error message (that should have been a
note) and add some ultra-basic checks for non-type template
arguments.
llvm-svn: 64189
representation for template arguments. Also simplifies the interface
for ActOnClassTemplateSpecialization and eliminates some annoying
allocations of TemplateArgs.
My attempt at smart pointers for template arguments lists is
relatively lame. We can improve it once we're sure that we have the
right representation for template arguments.
llvm-svn: 64154
to a class template. For example, the template-id 'vector<int>' now
has a nice, sugary type in the type system. What we can do now:
- Parse template-ids like 'vector<int>' (where 'vector' names a
class template) and form proper types for them in the type system.
- Parse icky template-ids like 'A<5>' and 'A<(5 > 0)>' properly,
using (sadly) a bool in the parser to tell it whether '>' should
be treated as an operator or not.
This is a baby-step, with major problems and limitations:
- There are currently two ways that we handle template arguments
(whether they are types or expressions). These will be merged, and,
most likely, TemplateArg will disappear.
- We don't have any notion of the declaration of class template
specializations or of template instantiations, so all template-ids
are fancy names for 'int' :)
llvm-svn: 64153
than a Decl, which gives us some more flexibility to express the
results with the type system. There are no clients using this
flexibility yet, but it's meant to be able to describe qualified names
as written in the source (e.g., "foo::type") or template-ids that name
a class template specialization (e.g., "std::vector<INT>").
DeclSpec's TST_typedef has become TST_typename, to reflect its use to
describe types found by name (that may or may not be typedefs). The
type representation of a DeclSpec with TST_typename is an opaque
QualType pointer. All users of TST_typedef, both direct and indirect,
have been updated for these changes.
llvm-svn: 64141
redeclarations. For example, checks that a class template
redeclaration has the same template parameters as previous
declarations.
Detangled class-template checking from ActOnTag, whose logic was
getting rather convoluted because it tried to handle C, C++, and C++
template semantics in one shot.
Made some inroads toward eliminating extraneous "declaration does not
declare anything" errors by adding an "error" type specifier.
llvm-svn: 63973
This shrinks OwningResult by one pointer. Since it is no longer larger than OwningPtr, merge the two.
This leads to simpler client code and speeds up my benchmark by 2.7%.
For some reason, this exposes a previously hidden bug, causing a regression in SemaCXX/condition.cpp.
llvm-svn: 63867
- Support initialization of reference members; complain if any
reference members are left uninitialized.
- Use C++ copy-initialization for initializing each element (falls
back to constraint checking in C)
- Make sure we diagnose when one tries to provide an initializer
list for a non-aggregate.
- Don't complain about empty initializers in C++ (they are permitted)
- Unrelated but necessary: don't bother trying to convert the
decl-specifier-seq to a type when we're dealing with a C++
constructor, destructor, or conversion operator; it results in
spurious warnings.
llvm-svn: 63431
.def file for each library. This means that adding a diagnostic
to sema doesn't require all the other libraries to be rebuilt.
Patch by Anders Johnsen!
llvm-svn: 63111
- When it's safe, ActionResult uses the low bit of the pointer for
the "invalid" flag rather than a separate "bool" value. This keeps
GCC from generating some truly awful code, for a > 3x speedup in the
result-passing microbenchmark.
- When DISABLE_SMART_POINTERS is defined, store an ActionResult
within ASTOwningResult rather than an ASTOwningPtr. Brings the
performance benefits of the above to smart pointers with
DISABLE_SMART_POINTERS defined.
Sadly, these micro-benchmark performance improvements don't seem to
make much of a difference on Cocoa.h right now. However, they're
harmless and might help with future optimizations.
llvm-svn: 63061