This patch changes the way the reproducer is initialized. Rather than
making changes at run time we now do everything at initialization time.
To make this happen we had to introduce initializer options and their SB
variant. This allows us to tell the initializer that we're running in
reproducer capture/replay mode.
Because of this change we also had to alter our testing strategy. We
cannot reinitialize LLDB when using the dotest infrastructure. Instead
we use lit and invoke two instances of the driver.
Another consequence is that we can no longer enable capture or replay
through commands. This was bound to go away form the beginning, but I
had something in mind where you could enable/disable specific providers.
However this seems like it adds very little value right now so the
corresponding commands were removed.
Finally this change also means you now have to control this through the
driver, for which I replaced --reproducer with --capture and --replay to
differentiate between the two modes.
Differential revision: https://reviews.llvm.org/D55038
llvm-svn: 348152
When I landed the initial reproducer framework I knew there were some
things that needed improvement. Rather than bundling it with a patch
that adds more functionality I split it off into this patch. I also
think the API is stable enough to add unit testing, which is included in
this patch as well.
Other improvements include:
- Refactor how we initialize the loader and generator.
- Improve naming consistency: capture and replay seems the least ambiguous.
- Index providers by name and make sure there's only one of each.
- Add convenience methods for creating and accessing providers.
Differential revision: https://reviews.llvm.org/D54616
llvm-svn: 347716
The DataExtractor class itself was moved to Utility some time ago, but
it seems this was not reflected in the location of the test code. Fix
that.
llvm-svn: 346867
The whole point of this change was making it possible to resolve paths
without depending on the FileSystem, which is not what I did here. Not
sure what I was thinking...
llvm-svn: 346466
In order to call real_path from the TildeExpressionResolver we need
access to the FileSystem. Since the resolver lives under utility we have
to pass in the FS.
llvm-svn: 346457
This patch removes the logic for resolving paths out of FileSpec and
updates call sites to rely on the FileSystem class instead.
Differential revision: https://reviews.llvm.org/D53915
llvm-svn: 345890
Summary:
This patch adds a framework for adding descriptions to the command completions we provide.
It also adds descriptions for completed top-level commands so that we can test this code.
Completions are in general supposed to be displayed alongside the completion itself. The descriptions
can be used to provide additional information about the completion to the user. Examples for descriptions
are function signatures when completing function calls in the expression command or the binary name
when providing completion for a symbol.
There is still some boilerplate code from the old completion API left in LLDB (mostly because the respective
APIs are reused for non-completion related purposes, so the CompletionRequest doesn't make sense to be
used), so that's why I still had to change some function signatures. Also, as the old API only passes around a
list of matches, and the descriptions are for these functions just another list, I had to add some code that
essentially just ensures that both lists are always the same side (e.g. all the manual calls to
`descriptions->AddString(X)` below a `matches->AddString(Y)` call).
The initial command descriptions that come with this patch are just reusing the existing
short help that is already added in LLDB.
An example completion with descriptions looks like this:
```
(lldb) pl
Available completions:
platform -- Commands to manage and create platforms.
plugin -- Commands for managing LLDB plugins.
```
Reviewers: #lldb, jingham
Reviewed By: #lldb, jingham
Subscribers: jingham, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D51175
llvm-svn: 342181
Summary:
This class was initially in Host because its implementation used to be
very OS-specific. However, with C++11, it has become a very simple
std::condition_variable wrapper, with no host-specific code.
It is also a general purpose utility class, so it makes sense for it to
live in a place where it can be used by everyone.
This has no effect on the layering right now, but it enables me to later
move the Listener+Broadcaster+Event combo to a lower layer, which is
important, as these are used in a lot of places (notably for launching a
process in Host code).
Reviewers: jingham, zturner, teemperor
Reviewed By: zturner
Subscribers: xiaobai, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D50384
llvm-svn: 341089
Summary:
This issue came up because it caused problems in our unit tests. The StringPool did connect counterparts only once and silently ignored the values passed in subsequent calls.
The simplest solution for the unit tests would be silent overwrite. In practice, however, it seems useful to assert that we never overwrite a different mangled counterpart.
If we ever have mangled counterparts for other languages than C++, this makes it more likely to notice collisions.
I added an assertion that allows the following cases:
* inserting a new value
* overwriting the empty string
* overwriting with an identical value
I fixed the unit tests, which used "random" strings and thus produced collisions.
It would be even better if there was a way to reset or isolate the StringPool, but that's a different story.
Reviewers: jingham, friss, labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D50536
llvm-svn: 339669
Summary: It was not immediately clear to me whether or not non-null-terminated StringRef's are supported in ConstString and/or the counterpart mechanism. From this test it seems to be fine. Maybe useful to keep?
Reviewers: labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D50334
llvm-svn: 339292
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
Summary: `IsEmpty()` and `operator bool() == false` have equal semantics. Usage in Mangled::GetDemangledName() was incorrect. What it actually wants is a check for null-string. Split this off of D50071 and added a test to clarify usage.
Reviewers: labath, jingham
Subscribers: erik.pilkington, lldb-commits
Differential Revision: https://reviews.llvm.org/D50327
llvm-svn: 339014
Summary:
This patch allows LLDB's Stream class to count the bytes it has written to so far.
There are two major motivations for this patch:
The first one is that this will allow us to get rid of all the handwritten byte counting code
we have in LLDB so far. Examples for this are pretty much all functions in LLDB that
take a Stream to write to and return a size_t, which usually represents the bytes written.
By moving to this centralized byte counting mechanism, we hopefully can avoid some
tricky errors that happen when some code forgets to count the written bytes while
writing something to a stream.
The second motivation is that this is needed for the migration away from LLDB's `Stream`
and towards LLVM's `raw_ostream`. My current plan is to start offering a fake raw_ostream
class that just forwards to a LLDB Stream.
However, for this raw_ostream wrapper we need to fulfill the raw_ostream interface with
LLDB's Stream, which currently lacks the ability to count the bytes written so far (which
raw_ostream exposes by it's `tell()` method). By adding this functionality it is trivial to start
rolling out our raw_ostream wrapper (and then eventually completely move to raw_ostream).
Also, once this fake raw_ostream is available, we can start replacing our own code writing
to LLDB's Stream by LLVM code writing to raw_ostream. The best example for this is the
LEB128 encoding we currently ship, which can be replaced with by LLVM's version which
accepts an raw_ostream.
From the point of view of the pure source changes this test does, we essentially just renamed
the Write implementation in Stream to `WriteImpl` while the `Write` method everyone is using
to write its raw bytes is now just forwarding and counting the written bytes.
Reviewers: labath, davide
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D50159
llvm-svn: 338733
Summary:
When I added the Stream unit test (r338488), the build bots failed due to an out-of-
bound reads when passing an empty string to the PutCStringAsRawHex8 method.
In r338491 I removed the test case to fix the bots.
This patch fixes this in PutCStringAsRawHex8 by always checking for the terminating
null character in the given string (instead of skipping it the first time). It also re-adds the
test case I removed.
Reviewers: vsk
Reviewed By: vsk
Subscribers: vsk, lldb-commits
Differential Revision: https://reviews.llvm.org/D50149
llvm-svn: 338637
The suspicious behavior is obviously because this method reads
OOB memory, so I'll remove it for now and re-add the test alongside
the fix later.
llvm-svn: 338491
Summary:
This adds an initial small unit test for LLDB's Stream class, which should at least cover
most of the functions in the Stream class. StreamString is always in big endian
mode, so that's the only stream byte order path this test covers as of now. Also,
the binary mode still needs to be tested for all print methods.
Also adds some FIXMEs for wrong/strange result values of the Stream class that we hit
while testing those functions.
Reviewers: labath
Reviewed By: labath
Subscribers: probinson, labath, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D50027
llvm-svn: 338488
Summary:
We currently allow any completion handler to read and manipulate the list of matches we
calculated so far. This leads to a few problems:
Firstly, a completion handler's logic can now depend on previously calculated results
by another handlers. No completion handler should have such an implicit dependency,
but the current API makes it likely that this could happen (or already happens). Especially
the fact that some completion handler deleted all previously calculated results can mess
things up right now.
Secondly, all completion handlers have knowledge about our internal data structures with
this API. This makes refactoring this internal data structure much harder than it should be.
Especially planned changes like the support of descriptions for completions are currently
giant patches because we have to refactor every single completion handler.
This patch narrows the contract the CompletionRequest has with the different handlers to:
1. A handler can suggest a completion.
2. A handler can ask how many suggestions we already have.
Point 2 obviously means we still have a dependency left between the different handlers, but
getting rid of this is too large to just append it to this patch.
Otherwise this patch just completely hides the internal StringList to the different handlers.
The CompletionRequest API now also ensures that the list of completions is unique and we
don't suggest the same value multiple times to the user. This property has been so far only
been ensured by the `Option` handler, but is now applied globally. This is part of this patch
as the OptionHandler is no longer able to implement this functionality itself.
Reviewers: jingham, davide, labath
Reviewed By: davide
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D49322
llvm-svn: 338151
Summary:
This patch fixes a few problems with the FormatAnsiTerminalCodes function:
* It does an infinite loop on an unknown color value.
* It crashes when the color value is at the end of the string.
* It deletes the first character behind the color token.
Also added a few tests that reproduce those problems (and test some other corner cases).
Reviewers: davide, labath
Reviewed By: labath
Subscribers: labath, lldb-commits, mgorny
Differential Revision: https://reviews.llvm.org/D49307
llvm-svn: 337189
Summary:
As suggested in D48796, this patch replaces even more internal calls that were using the old
completion API style with a single CompletionRequest. In some cases we also pass an option
vector/index, but as we don't always have this information, it currently is not part of the
CompletionRequest class.
The constructor of the CompletionRequest is now also more sensible. You only pass the
user input, cursor position and your list of matches to the request and the rest will be
inferred (using the same code we used before to calculate this). You also have to pass these
match window parameters to it, even though they are unused right now.
The patch shouldn't change any behavior.
Reviewers: jingham
Reviewed By: jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D48976
llvm-svn: 337031
Summary:
A subset of the LLDB commands follows this command line interface style:
<command name> [arguments] -- <string suffix>
The parsing code for this interface has been so far been duplicated into the different
command objects which makes it hard to maintain and reuse elsewhere.
This patches improves the situation by adding a OptionsWithRaw class that centralizes
the parsing logic and allows easier testing. The different commands now just call this class to
extract the arguments and the raw suffix from the provided user input.
Reviewers: jingham
Reviewed By: jingham
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D49106
llvm-svn: 336723
Summary:
This patch refactors the internal completion API. It now takes (as far as possible) a single
CompletionRequest object instead o half a dozen in/out/in-out parameters. The CompletionRequest
contains a common superset of the different parameters as far as it makes sense. This includes
the raw command line string and raw cursor position, which should make the `expr` command
possible to implement (at least without hacks that reconstruct the command line from the args).
This patch is not intended to change the observable behavior of lldb in any way. It's also as
minimal as possible and doesn't attempt to fix all the problems the API has.
Some Q&A:
Q: Why is this not fixing all the problems in the completion API?
A: Because is a blocker for the expr command completion which I want to get in ASAP. This is the
smallest patch that unblocks the expr completion patch and which allows trivial refactoring in the future.
The patch also doesn't really change the internal information flow in the API, so that hopefully
saves us from ever having to revert and resubmit this humongous patch.
Q: Can we merge all the copy-pasted code in the completion methods
(like computing the current incomplete arg) into CompletionRequest class?
A: Yes, but it's out of scope for this patch.
Q: Why the `word_complete = request.GetWordComplete(); ... ` pattern?
A: I don't want to add a getter that returns a reference to the internal integer. So we have
to use a temporary variable and the Getter/Setter instead. We don't throw exceptions
from what I can tell, so the behavior doesn't change.
Q: Why are we not owning the list of matches?
A: Because that's how the previous API works. But that should be fixed too (in another patch).
Q: Can we make the constructor simpler and compute some of the values from the plain command?
A: I think this works, but I rather want to have this in a follow up commit. Especially when making nested
request it's a bit awkward that the parsed arguments behave as both input/output (as we should in theory
propagate the changes on the nested request back to the parent request if we don't want to change the
behavior too much).
Q: Can't we pass one const request object and then just return another result object instead of mixing
them together in one in/out parameter?
A: It's hard to get keep the same behavior with that pattern, but I think we can also get a nice API with just
a single request object. If we make all input parameters read-only, we have a clear separation between what
is actually an input and what an output parameter (and hopefully we get rid of the in-out parameters).
Q: Can we throw out the 'match' variables that are not implemented according to the comment?
A: We currently just forward them as in the old code to the different methods, even though I think
they are really not used. We can easily remove and readd them once every single completion method just
takes a CompletionRequest, but for now I prefer NFC behavior from the perspective of the API user.
Reviewers: davide, jingham, labath
Reviewed By: jingham
Subscribers: mgorny, friss, lldb-commits
Differential Revision: https://reviews.llvm.org/D48796
llvm-svn: 336146
Summary:
The data structure is optimized for the case where the UUID size is <=
20 bytes (standard length emitted by the GNU linkers), but larger sizes
are also possible.
I've modified the string conversion function to support the new sizes as
well. For standard UUIDs it maintains the traditional formatting
(4-2-2-2-6). If a UUID is shorter, we just cut this sequence short, and
for longer UUIDs it will just repeat the last 6-byte block as long as
necessary.
I've also modified ObjectFileELF to take advantage of the new UUIDs and
avoid manually padding the UUID to 16 bytes. While there, I also made
sure the computed UUID does not depend on host endianness.
Reviewers: clayborg, lemo, sas, davide, espindola
Subscribers: emaste, arichardson, lldb-commits
Differential Revision: https://reviews.llvm.org/D48633
llvm-svn: 335963
Summary:
During the previous attempt to generalize the UUID class, it was
suggested that we represent invalid UUIDs as length zero (previously, we
used an all-zero UUID for that). This meant that some valid build-ids
could not be represented (it's possible however unlikely that a checksum of
some file would be zero) and complicated adding support for variable
length build-ids (should a 16-byte empty UUID compare equal to a 20-byte
empty UUID?).
This patch resolves these issues by introducing a canonical
representation for an invalid UUID. The slight complication here is that
some clients (MachO) actually use the all-zero notation to mean "no UUID
has been set". To keep this use case working (while making it very
explicit about which construction semantices are wanted), replaced the
UUID constructors and the SetBytes functions with named factory methods.
- "fromData" creates a UUID from the given data, and it treats all bytes
equally.
- "fromOptionalData" first checks the data contents - if all bytes are
zero, it treats this as an invalid/empty UUID.
Reviewers: clayborg, sas, lemo, davide, espindola
Subscribers: emaste, lldb-commits, arichardson
Differential Revision: https://reviews.llvm.org/D48479
llvm-svn: 335612
Instead of a separate GetBytes + GetByteSize methods I introduce a
single GetBytes method returning an ArrayRef.
This is NFC cleanup now, but it should make handling arbitrarily-sized
UUIDs cleaner, should we choose to go that way. I also took the
opportunity to add some unit tests for this class.
llvm-svn: 335244
With the recent changes in FileSpec to use LLVM's path style, it is
possible to delegate a bunch of common path operations to LLVM's path
helpers. This means we only have to maintain a single implementation and
at the same time can benefit from the efforts made by the rest of the
LLVM community.
This is part one of a set of patches. There was no obvious way to split
this so I just worked from top to bottom.
Differential revision: https://reviews.llvm.org/D48084
llvm-svn: 334615
When reading DBGSourcePathRemapping from a dSYM, we remove the last two
path components to make the source lookup more general. However, when
dealing with a relative path that has less than 2 components, we ended
up with an invalid (empty) FileSpec.
This patch changes the behavior of removeLastPathComponent to remove the
last path component, if possible. It does this by checking whether a
parent path exists, and if so using that as the new path. We rely
entirely on LLVM's path implementation to do the heavy lifting.
We now also return a boolean which indicates whether the operator was
successful or not.
Differential revision: https://reviews.llvm.org/D47495
rdar://37791687
llvm-svn: 333540
PathMappingList was broken for relative and empty paths after normalization changes in FileSpec. There were also no tests for PathMappingList so I added those.
Changes include:
Change PathMappingList::ReverseRemapPath() to take FileSpec objects instead of ConstString. The only client of this was doing work to convert to and from ConstString objects for no reason.
Normalize all paths prefix and replacements that are added to the PathMappingList vector so they match the paths that have been already normalized in the debug info
Unify code in the two forms of PathMappingList::RemapPath() so only one contains the actual functionality. Prior to this, there were two versions of this code.
Use FileSpec::AppendPathComponent() and remove a long standing TODO so paths are correctly appended to each other.
Added tests for absolute, relative and empty paths.
Differential Revision: https://reviews.llvm.org/D47021
llvm-svn: 332842
After switching to LLVM normalization, if we init FileSpec with "." we would end up with m_directory being NULL and m_filename being "".
This patch fixes this by allowing the path to be normalized and if it normalized to nothing, set it to m_filename.
Differential Revision: https://reviews.llvm.org/D46783
llvm-svn: 332618
Summary:
1) In logtest.cpp, the name of the file that is reported is not always capitalized, so split the comparison to validate the file (case insensitive) and function (case sensitive) separately
2) Update the gdb remote client tests to work with Python 3. In Python 3, socket sends/receives data as bytes rather than byte strings. This also updates the usage of .hex() - this is no longer available in Python 3, so use hexlify instead
Reviewers: asmith, labath, zturner
Reviewed By: labath
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46773
llvm-svn: 332293
Summary:
The llvm version of the enum has the same enumerators, with stlightly
different names, so this is mostly just a search&replace exercise. One
concrete benefit of this is that we can remove the function for
converting between the two enums.
To avoid typing llvm::sys::path::Style::windows everywhere I import the
enum into the FileSpec class, so it can be referenced as
FileSpec::Style::windows.
Reviewers: zturner, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D46753
llvm-svn: 332247
Summary:
now that llvm supports host-agnostic path manipulation functions (and
most of their kinks have been ironed out), we can remove our copies of
the path parsing functions in favour of the llvm ones.
This should be NFC except for the slight difference in handling of the
"//" path, which is now normalized to "/" (this only applies to the
literal "//" path; "//net" and friends still get to keep the two
slashes).
Reviewers: zturner, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D46687
llvm-svn: 332088
Always normalizing lldb_private::FileSpec paths will help us get a consistent results from comparisons when setting breakpoints and when looking for source files. This also removes a lot of complexity from the comparison routines. Modified the DWARF line table parser to use the normalized compile unit directory if needed.
Differential Revision: https://reviews.llvm.org/D45977
llvm-svn: 331049
Summary:
The Args class is used in plenty of places besides the command
interpreter (e.g., anything requiring an argc+argv combo, such as when
launching a process), so it needs to be in a lower layer. Now that the
class has no external dependencies, it can be moved down to the Utility
module.
This removes the last (direct) dependency from the Host module to
Interpreter, so I remove the Interpreter module from Host's dependency
list.
Reviewers: zturner, jingham, davide
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D45480
llvm-svn: 330200
Removing the template arguments and most of the mutating methods from
CleanUp makes it easier to understand and reuse.
In its present state, CleanUp would be too cumbersome to adapt to cases
where multiple objects need to be released. Take for example this change
in swift-lldb:
https://github.com/apple/swift-lldb/pull/334/files#diff-6f474df750f75c8ba675f2a8408a5629R219
This change is simple to express with the new CleanUp, but not so simple
with the old version.
Differential Revision: https://reviews.llvm.org/D43662
llvm-svn: 325964