Only explicitly look through integer and floating-point promotion where the result type is actually a promotion, which is not always the case for bit-fields in C.
llvm-svn: 348889
We would issue a false-positive diagnostic for parameters in function declarations shadowing fields; we now only issue the diagnostic on a function definition instead.
llvm-svn: 348400
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
Summary:
Prior to this patch, OpenCL code such as the following would attempt to create
a BranchInst with a non-bool argument:
if (enqueue_kernel(get_default_queue(), 0, nd, ^(void){})) /* ... */
This patch is a follow up on a similar issue with pipe builtin
operations. See commit r280800 and https://bugs.llvm.org/show_bug.cgi?id=30219.
This change, while being conservative on non-builtin functions,
should set the type of expressions invoking builtins to the
proper type, instead of defaulting to `bool` and requiring
manual overrides in Sema::CheckBuiltinFunctionCall.
In addition to tests for enqueue_kernel, the tests are extended to
check other OpenCL builtins.
Reviewers: Anastasia, spatel, rsmith
Reviewed By: Anastasia
Subscribers: kristina, cfe-commits, svenvh
Differential Revision: https://reviews.llvm.org/D52879
llvm-svn: 347658
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
Summary:
GCC already catches these situations so we should handle it too.
GCC warns in C++ mode only (does anybody know why?). I think it is useful in C mode too.
Reviewers: rsmith, erichkeane, aaron.ballman, efriedma, xbolva00
Reviewed By: xbolva00
Subscribers: efriedma, craig.topper, scanon, cfe-commits
Differential Revision: https://reviews.llvm.org/D52835
llvm-svn: 346865
This patch fixes a minimum divider for offset in intrinsics
msa_[st/ld]_[b/h/w/d], when value is known in compile time.
Differential revision: https://reviews.llvm.org/D54038
llvm-svn: 346302
A mask type is a 1 to 8-byte string that follows the "mask." annotation
in the format string. This enables obfuscating data in the event the
provided privacy level isn't enabled.
rdar://problem/36756282
llvm-svn: 346211
The size of an os_log buffer is known at any stage of compilation, so making it
a constant expression means that the common idiom of declaring a buffer for it
won't result in a VLA. That allows the compiler to skip saving and restoring
the stack pointer around such buffers.
This also moves the OSLog and other FormatString helpers from
libclangAnalysis to libclangAST to avoid a circular dependency.
llvm-svn: 345971
We haven't supported compiling ObjC1 for a long time (and never will again), so
there isn't any reason to keep these separate. This patch replaces
LangOpts::ObjC1 and LangOpts::ObjC2 with LangOpts::ObjC.
Differential revision: https://reviews.llvm.org/D53547
llvm-svn: 345637
Summary:
- Add `UETT_PreferredAlignOf` to account for the difference between `__alignof` and `alignof`
- `AlignOfType` now returns ABI alignment instead of preferred alignment iff clang-abi-compat > 7, and one uses _Alignof or alignof
Patch by Nicole Mazzuca!
Differential Revision: https://reviews.llvm.org/D53207
llvm-svn: 345419
Constructing a global std::map requires clang to generate a linear
amount of code to construct the initializer list if the elements are not
constexpr-constructible. std::vector is not constexpr-constructible, so
this code pattern was generating large amounts of code.
Also, because of PR38829, LLVM is pathologically slow on large basic
blocks, and this causes slow compilation. This works around the bug and
reduces code size.
SemaChecking.cpp -debug-info-kind=limited:
time objsize
before: 1m45.023s 9.8M
after: 0m25.205s 6.9M
So, a 42% obj size reduction and 3.2x speedup.
llvm-svn: 345329
Add a warning if a parameter with a named address space is passed
to a to_addr builtin.
For example:
int i;
to_private(&i); // generate warning as conversion from private to private is redundant.
Patch by Alistair Davies.
Differential Revision: https://reviews.llvm.org/D51411
llvm-svn: 342638
unsigned long long builtin_unpack_vector_int128 (vector int128_t, int);
vector int128_t builtin_pack_vector_int128 (unsigned long long, unsigned long long);
Builtins should behave the same way as in GCC.
Patch By: wuzish (Zixuan Wu)
Differential Revision: https://reviews.llvm.org/D52074
llvm-svn: 342614
Summary:
_Atomic and __sync_* operations are implicitly sequentially-consistent. Some
codebases want to force explicit usage of memory order instead. This warning
allows them to know where implicit sequentially-consistent memory order is used.
The warning isn't on by default because _Atomic was purposefully designed to
have seq_cst as the default: the idea was that it's the right thing to use most
of the time. This warning allows developers who disagree to enforce explicit
usage instead.
A follow-up patch will take care of C++'s std::atomic. It'll be different enough
from this patch that I think it should be separate: for C++ the atomic
operations all have a memory order parameter (or two), but it's defaulted. I
believe this warning should trigger when the default is used, but not when
seq_cst is used explicitly (or implicitly as the failure order for cmpxchg).
<rdar://problem/28172966>
Reviewers: rjmccall
Subscribers: dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D51084
llvm-svn: 341860
Namely, print the likely macro name when it's used, and include the actual
computed sizes in the diagnostic message, which are sometimes not obvious.
rdar://43909200
Differential revision: https://reviews.llvm.org/D51697
llvm-svn: 341566
This adds the following intrinsics:
_kshiftli_mask8
_kshiftli_mask16
_kshiftli_mask32
_kshiftli_mask64
_kshiftri_mask8
_kshiftri_mask16
_kshiftri_mask32
_kshiftri_mask64
llvm-svn: 341234
Summary:
C++11 onwards specs the non-member functions atomic_load and atomic_load_explicit as taking the atomic<T> by const (potentially volatile) pointer. C11, in its infinite wisdom, decided to drop the const, and C17 will fix this with DR459 (the current draft forgot to fix B.16, but that’s not the normative part).
clang’s lib/Headers/stdatomic.h implements these as #define to the __c11_* equivalent, which are builtins with custom typecheck. Fix the typecheck.
D47613 takes care of the libc++ side.
Discussion: http://lists.llvm.org/pipermail/cfe-dev/2018-May/058129.html
<rdar://problem/27426936>
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47618
llvm-svn: 338743
This diagnoses calls to memset that have the second and third arguments
transposed, for example:
memset(buf, sizeof(buf), 0);
This is done by checking if the third argument is a literal 0, or if the second
is a sizeof expression (and the third isn't). The first check is also done for
calls to bzero.
Differential revision: https://reviews.llvm.org/D49112
llvm-svn: 337470
The '%tu'/'%td' as formatting specifiers have been used to print out the
NSInteger/NSUInteger values for a long time. Typically their ABI matches, but that's
not the case on watchOS. The ABI difference boils down to the following:
- Regular 32-bit darwin targets (like armv7) use 'ptrdiff_t' of type 'int',
which matches 'NSInteger'.
- WatchOS arm target (armv7k) uses 'ptrdiff_t' of type 'long', which doesn't
match 'NSInteger' of type 'int'.
Because of this ABI difference these specifiers trigger -Wformat warnings only
for watchOS builds, which is really inconvenient for cross-platform code.
This patch avoids this -Wformat warning for '%tu'/'%td' and NS[U]Integer only,
and instead uses the new -Wformat-pedantic warning that JF introduced in
https://reviews.llvm.org/D47290. This is acceptable because Darwin guarantees that,
despite the watchOS ABI differences, sizeof(ptrdiff_t) == sizeof(NS[U]Integer),
and alignof(ptrdiff_t) == alignof(NS[U]Integer) so the warning is therefore noisy
for pedantic reasons.
I'll update public documentation to ensure that this behaviour is properly
communicated.
rdar://41739204
Differential Revision: https://reviews.llvm.org/D48852
llvm-svn: 336396
If a function has multiple format_arg attributes, clang only considers
the first it finds (because AttributeLists are in reverse order, not
necessarily the textually first) and ignores all others.
Loop over all FormatArgAttr to print warnings for all declared
format_arg attributes.
For instance, libintl's ngettext (select plural or singular version of
format string) has two __format_arg__ attributes.
Differential Revision: https://reviews.llvm.org/D48734
llvm-svn: 336239
Summary:
Pick D42933 back up, and make NSInteger/NSUInteger with %zu/%zi specifiers on Darwin warn only in pedantic mode. The default -Wformat recently started warning for the following code because of the added support for analysis for the '%zi' specifier.
NSInteger i = NSIntegerMax;
NSLog(@"max NSInteger = %zi", i);
The problem is that on armv7 %zi is 'long', and NSInteger is typedefed to 'int' in Foundation. We should avoid this warning as it's inconvenient to our users: it's target specific (happens only on armv7 and not arm64), and breaks their existing code. We should also silence the warning for the '%zu' specifier to ensure consistency. This is acceptable because Darwin guarantees that, despite the unfortunate choice of typedef, sizeof(size_t) == sizeof(NS[U]Integer), the warning is therefore noisy for pedantic reasons. Once this is in I'll update public documentation.
Related discussion on cfe-dev:
http://lists.llvm.org/pipermail/cfe-dev/2018-May/058050.html
<rdar://36874921&40501559>
Reviewers: ahatanak, vsapsai, alexshap, aaron.ballman, javed.absar, jfb, rjmccall
Subscribers: kristof.beyls, aheejin, cfe-commits
Differential Revision: https://reviews.llvm.org/D47290
llvm-svn: 335393
dead code.
This is important for C++ templates that essentially compute the valid
input in a way that is constant and will cause all the invalid cases to
be dead code that is deleted. Code in the wild actually does this and
GCC also accepts these kinds of patterns so it is important to support
it.
To make this work, we provide a non-error path to diagnose these issues,
and use a default-error warning instead. This keeps the relatively
strict handling but prevents nastiness like SFINAE on these errors. It
also allows us to safely use the system to diagnose this only when it
occurs at runtime (in emitted code).
Entertainingly, this required fixing the syntax in various other ways
for the x86 test because we never bothered to diagnose that the returns
were invalid.
Since debugging these compile failures was super confusing, I've also
improved the diagnostic to actually say what the value was. Most of the
checks I've made ignore this to simplify maintenance, but I've checked
it in a few places to make sure the diagnsotic is working.
Depends on D48462. Without that, we might actually crash some part of
the compiler after bypassing the error here.
Thanks to Richard, Ben Kramer, and especially Craig Topper for all the
help here.
Differential Revision: https://reviews.llvm.org/D48464
llvm-svn: 335309