This adds call site info support for call instructions with delay slot.
Search for instructions inside call delay slot, which load value
into parameter forwarding registers.
Return address of the call points to instruction after call delay slot,
which is not the one, immediately after the call instruction.
Patch by Nikola Tesic
Differential revision: https://reviews.llvm.org/D78107
The collectCallSiteParameters() method searches for instructions
which load values into registers used for parameters passing.
Previously, interpretation of those values, loaded by one such
instruction, was implemented inside collectCallSiteParameters() method.
This patch moves the interpretation code from collectCallSiteParameters()
method into a separate static method named interpretValue. New method is
called from collectCallSiteParameters() to process each instruction from
targeted instruction scope.
The collectCallSiteParameters() searches for loaded parameter value
among instructions which precede the call instruction, inside the same
basic block. When needed, new method (interpretValue) could be used for
searching any instruction scope.
This is preparation for search of parameter value, loaded inside call
delay slot.
Patch by Nikola Tesic
Differential revision: https://reviews.llvm.org/D78106
This patch adds support for emission of following DWARFv5 macro
forms in .debug_macro.dwo section:
- DW_MACRO_start_file
- DW_MACRO_end_file
- DW_MACRO_define_strx
- DW_MACRO_undef_strx
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D78866
DW_MACRO_define_strx forms are supported now in llvm-dwarfdump and these
forms can be used in both debug_macro[.dwo] sections. An added advantage
for using strx forms over strp forms is that it uses indices
approach instead of a relocation to debug_str section.
This patch unify the emission for debug_macro section.
Reviewed by: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D78865
Summary:
A struct argument can be passed-by-value to a callee via a pointer to a
temporary stack copy. Add support for emitting an entry value DBG_VALUE
when an indirect parameter DBG_VALUE becomes unavailable. This is done
by omitting DW_OP_stack_value from the entry value expression, to make
the expression describe the location of an object.
rdar://63373691
Reviewers: djtodoro, aprantl, dstenb
Subscribers: hiraditya, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D80345
for variables in nested scopes (including inlined functions) if there is a
single location which covers the entire scope and the scope is contained in a
single block.
Based on work by @jmorse.
Reviewed By: vsk, aprantl
Differential Revision: https://reviews.llvm.org/D79571
This is a no-op/NFC at the moment & generally makes the code /somewhat/
cleaner/less reliant on assumptions about what will produce a debug_addr
section.
It's still a bit "spooky action at a distance" - the add ranges code
pre-emptively inserts addresses into the address pool it knows will
eventually be used by the range emission code (or low/high pc).
The 'ideal' would be either to actually compute the addresses needed for
range (& loc) emission earlier - which would mean decanonicalizing the
range/loc representation earlier to account for whether it was going to
use addrx encodings or not (which would be unfortunate, but could be
refactored to be relatively unobtrusive).
Alternatively, emitting the range/loc sections earlier would cause them
to request the needed addresses sooner - but then you endup having to
split finalizeModuleInfo because some things need to be handled there
before the ranges/locs are emitted, I think...
It is bad practice to capture by default (via [&] in this case) when
using lambdas, so we should avoid that as much as possible.
This patch fixes that in the getForwardingRegsDefinedByMI
from DwarfDebug module.
Differential Revision: https://reviews.llvm.org/D79616
We should use explicit type instead of auto type deduction when
the type is so obvious. In addition, we remove ambiguity, since auto
type deduction sometimes is not that intuitive, so that could lead
us to some unwanted behavior.
This patch fixes that in the collectCallSiteParameters() from
DwarfDebug module.
Differential Revision: https://reviews.llvm.org/D79624
With a fix to uninitialized EndOffset.
DW_OP_call_ref is the only operation that has an operand which depends
on the DWARF format. The patch fixes handling that operation in DWARF64
units.
Differential Revision: https://reviews.llvm.org/D79501
DW_OP_call_ref is the only operation that has an operand which depends
on the DWARF format. The patch fixes handling that operation in DWARF64
units.
Differential Revision: https://reviews.llvm.org/D79501
It can be used to avoid passing the begin and end of a range.
This makes the code shorter and it is consistent with another
wrappers we already have.
Differential revision: https://reviews.llvm.org/D78016
This is a performance patch that hoists two conditions in DwarfDebug's
validThroughout to avoid a linear-scan of all instructions in a block. We
now exit early if validThrougout will never return true for the variable
location.
The first added clause filters for the two circumstances where
validThroughout will return true. The second added clause should be
identical to the one that's deleted from after the linear-scan.
Differential Revision: https://reviews.llvm.org/D77639
Summary:
This patch adds support for emission of following DWARFv5 macro forms
in .debug_macro section.
1. DW_MACRO_start_file
2. DW_MACRO_end_file
3. DW_MACRO_define_strp
4. DW_MACRO_undef_strp.
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D72828
Record the address of a tail-calling branch instruction within its call
site entry using DW_AT_call_pc. This allows a debugger to determine the
address to use when creating aritificial frames.
This creates an extra attribute + relocation at tail call sites, which
constitute 3-5% of all call sites in xnu/clang respectively.
rdar://60307600
Differential Revision: https://reviews.llvm.org/D76336
When compiling
```
struct S {
float w;
};
void f(long w, long b);
void g(struct S s) {
int w = s.w;
f(w, w*4);
}
```
I get Assertion failed: ((!CombinedExpr || CombinedExpr->isValid()) && "Combined debug expression is invalid").
That's because we combine two epxressions that both end in DW_OP_stack_value:
```
(lldb) p Expr->dump()
!DIExpression(DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value)
(lldb) p Param.Expr->dump()
!DIExpression(DW_OP_constu, 4, DW_OP_mul, DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value)
(lldb) p CombinedExpr->isValid()
(bool) $0 = false
(lldb) p CombinedExpr->dump()
!DIExpression(4097, 32, 5, 4097, 64, 5, 16, 4, 30, 4097, 32, 5, 4097, 64, 5, 159, 159)
```
I believe that in this particular case combining two stack values is
safe, but I didn't want to sink the special handling into
DIExpression::append() because I do want everyone to think about what
they are doing.
Patch by Adrian Prantl.
Fixes PR45181.
rdar://problem/60383095
Differential Revision: https://reviews.llvm.org/D76164
This is part of PR44213 https://bugs.llvm.org/show_bug.cgi?id=44213
When importing (system) Clang modules, LLDB needs to know which SDK
(e.g., MacOSX, iPhoneSimulator, ...) they came from. While the sysroot
attribute contains the absolute path to the SDK, this doesn't work
well when the debugger is run on a different machine than the
compiler, and the SDKs are installed in different directories. It thus
makes sense to just store the name of the SDK instead of the absolute
path, so it can be found relative to LLDB.
rdar://problem/51645582
Differential Revision: https://reviews.llvm.org/D75646
```
// clang -c -gdwarf-5 a.s -o a.o
.section .init; ret
.text; ret
```
.debug_info contains DW_AT_ranges and llvm-dwarfdump will report
a verification error because .debug_rnglists does not exist (not
implemented).
This patch generates .debug_rnglists for assembly files.
emitListsTableHeaderStart() in DwarfDebug.cpp can be shared with
MCDwarf.cpp. Because CodeGen depends on MC, I move the function to
MCDwarf.cpp
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D75375
Summary:
If the describeLoadedValue() hook produced a DIExpression when
describing a instruction, and it was not possible to emit a call site
entry directly (the value operand was not an immediate nor a preserved
register), then that described value could not be inserted into the
worklist, and would instead be dropped, meaning that the parameter's
call site value couldn't be described.
This patch extends the worklist so that each entry has an DIExpression
that is built up when iterating through the instructions.
This allows us to describe instruction chains like this:
$reg0 = mv $fp
$reg0 = add $reg0, offset
call @call_with_offseted_fp
Since DW_OP_LLVM_entry_value operations can't be combined with any other
expression, such call site entries will not be emitted. I have added a
test, dbgcall-site-expr-entry-value.mir, which verifies that we don't
assert or emit broken DWARF in such cases.
Reviewers: djtodoro, aprantl, vsk
Reviewed By: djtodoro, vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D75036
Summary:
This is a preparatory patch for D75036, in which a debug expression is
associated with each parameter register in the worklist. In that patch
the two lambda functions addToWorklist() and finishCallSiteParams() grow
a bit, so move those out to separate functions. This patch also prepares
for each parameter register having their own expression moving the
creation of the DbgValueLoc into finishCallSiteParams().
Reviewers: djtodoro, vsk
Reviewed By: djtodoro, vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D75050
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Instructions marked as FrameSetup do not cause requestLabelAfterInsn to
be called and so no such label is generated. Call instructions which
require call site entries to be generated require this label to be
present in order to calculate the return PC offset/address, but the
check for whether the call instruction is marked as FrameSetup was not
present.
Therefore in the case where a call instruction is marked as FrameSetup,
an assertion failure occurs if a call site entry is to be generated.
This is the case with RISC-V's implementation of save/restore via
library calls.
Differential Revision: https://reviews.llvm.org/D71593
Add the isCandidateForCallSiteEntry predicate to MachineInstr to
determine whether a DWARF call site entry should be created for an
instruction.
For now, it's enough to have any call instruction that doesn't belong to
a blacklisted set of opcodes. For these opcodes, a call site entry isn't
meaningful.
Differential Revision: https://reviews.llvm.org/D74159
Summary:
This patch reorders the emission of debug_str section, so that
string can come after macros.
This is necessary for macro forms like DW_MACRO_define_strp,
which emits macro as a string in debug_str section.
Originally committed in: 1ced28cbe7
Reverted in: f75301d16d
(reverted due to tests failing on non-linux/x86 targets, tests have since been
generalized and specialized... since Split DWARF isn't supported on non-elf
targets anyway and we have no way to run on "whatever elf target is available"
so they fail on MacOS without an explicit target triple)
This code was incorrectly emitting extra bytes into arbitrary parts of
the object file when it was meant to be hashing them to compute the DWO
ID.
Follow-up patch(es) will refactor this API somewhat to make such bugs
harder to introduce, hopefully.
This code was incorrectly emitting extra bytes into arbitrary parts of
the object file when it was meant to be hashing them to compute the DWO
ID.
Follow-up patch(es) will refactor this API somewhat to make such bugs
harder to introduce, hopefully.