Eliminate the stack frame in functions with the noreturn nounwind
attributes, and when the noreturn-stack-elim target feature is
enabled. This reduces the code and stack space needed for noreturn
functions.
Differential Revision: https://reviews.llvm.org/D54210
llvm-svn: 346532
Both -fPIC and -G0 disable placement of globals in small data section,
but if a global has an explicit section assigmnent placing it in small
data, it should go there anyway.
llvm-svn: 346523
Change the type in a couple of lists and sets that only store physical
registers from unsigned to MCPhysRegs. The later is only 16bits and
saves us a bit of memory.
llvm-svn: 346254
The main caller of this already has an MVT and several targets called getSimpleVT inside without checking isSimple. This makes the simpleness explicit.
llvm-svn: 346180
These methods were just wrappers around getNode with additional asserts (identical and repeated 3 times). But getNode already has a switch that can be used to hold these asserts that allows them to be shared for all 3 opcodes. This also enables checking on the places that create these nodes without using the wrappers.
The rest of the patch is just changing all callers to use getNode directly.
llvm-svn: 346087
Small-data (i.e. GP-relative) loads and stores allow 16-bit scaled
offset. For a load of a value of type T, the small-data area is
equivalent to an array "T sdata[65536]". This implies that objects
of smaller sizes need to be closer to the beginning of sdata,
while larger objects may be farther away, or otherwise the offset
may be insufficient to reach it. Similarly, an object of a larger
size should not be accessed via a load of a smaller size.
llvm-svn: 345975
I added these annotations in r345878 because I wasn't sure if the
fallthrough was intended. Krzysztof Parzyszek confirmed that they should
be breaks, so that's what this patch does.
Reviewers: kparzysz
Differential Revision: https://reviews.llvm.org/D53991
llvm-svn: 345883
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
Clang's -Wimplicit-fallthrough check fires on these switch cases. GCC
does not warn when a case body that ends in a switch falls through to a
case label of an outer switch.
It's not clear if these fall throughs are truly intended. The Hexagon
tests pass regardless of whether these case blocks fall through or
break.
For now, I have applied the intended fallthrough annotation macro with a
FIXME comment to unblock enabling the warning. I will send a follow-up
patch that converts them to breaks to the Hexagon maintainers.
llvm-svn: 345878
Previously this case fell through to unreachable, so it is clearly not
covered by any test case in LLVM. It may be dynamically unreachable, in
fact. However, if it were to run, this is what it would logically do.
The assert suggests that the intended behavior was not to allow folding
offsets from jump table indices, which makes sense.
llvm-svn: 345868
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
llvm-svn: 345705
The class definition for Call_nr has the itinerary as a
parameter, but the value is never assigned to the Itinerary
field for the instruction. This means the compiler is unable
to schedule and packetize the instruction correctly because
these instrution will not have any resource descritions.
I don't have a specific test case, but the ps_call_nr.ll
test failed with a proposed patch.
llvm-svn: 345442
This will allow other generators of LLVM IR to use the auto-vectorizer
without having to change that flag.
Note: on its own, this patch will enable auto-vectorization on Hexagon
in all cases, regardless of the -fvectorize flag. There is a companion
clang patch that together with this one forms an NFC for clang users.
llvm-svn: 345169
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
Having a constant value operand in the compound instruction
is not always profitable. This patch improves coremark by ~4% on
Hexagon.
Differential Revision: https://reviews.llvm.org/D53152
llvm-svn: 344284
Also, avoid comparing GUIDs when ordering global addresses, because
source file location can cause different GUID to be calculated. As a
result, a pair of symbols can compare "less" in one directory, but
"greater" in another.
llvm-svn: 344271
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
Finally all targets are enabling multiple regalloc hints, so the hook to
disable this can now be removed.
NFC.
Review: Simon Pilgrim
https://reviews.llvm.org/D52316
llvm-svn: 343851
The pattern had a couple of problems:
- It was checking for loads of bytes in the reverse order to what it
should have been looking for.
- It would replace loads of bytes with a load of a word without making
sure that the alignment was correct.
Thanks to Eli Friedman for pointing it out.
llvm-svn: 343514
This involves changing the shouldExpandAtomicCmpXchgInIR interface, but I have
updated the in-tree backends using this hook (ARM, AArch64, Hexagon) so they
will see no functional change. Previously this hook returned bool, but it now
returns AtomicExpansionKind.
This hook allows targets to select how a given cmpxchg is to be expanded.
D48131 uses this to expand part-word cmpxchg to a target-specific intrinsic.
See my associated RFC for more info on the motivation for this change
<http://lists.llvm.org/pipermail/llvm-dev/2018-June/123993.html>.
Differential Revision: https://reviews.llvm.org/D48130
llvm-svn: 342550
- Instead of having both `SUnit::dump(ScheduleDAG*)` and
`ScheduleDAG::dumpNode(ScheduleDAG*)`, just keep the latter around.
- Add `ScheduleDAG::dump()` and avoid code duplication in several
places. Implement it for different ScheduleDAG variants.
- Add `ScheduleDAG::dumpNodeName()` in favor of the `SUnit::print()`
functions. They were only ever used for debug dumping and putting the
function into ScheduleDAG is consistent with the `dumpNode()` change.
llvm-svn: 342520
Shufflevector instructions in LLVM IR that extract a subset of elements
of a longer input into a shorter vector can be done using VECTOR_SHUFFLEs.
This will avoid expanding them into constly extracts and inserts.
llvm-svn: 342091
Scalarization of a shuffle will break up the source vectors into individual
elements, and use them to assemble the resulting vector. An element type of
a legal vector type may not necessarily be a legal scalar type, so make
sure that the extracted values are extended to a legal scalar type.
llvm-svn: 342079
Disassemblers cannot depend on main target headers. The same is true for
MCTargetDesc, but there's a lot more cleanup needed for that.
llvm-svn: 341822
This replaces r337723. The global list in the module can be huge with LTO,
plus the module can change between different invocations of the pass, so
there is no easy way to deterministically cache the ordering (especially
in the presence of multiple threads).
llvm-svn: 341478
This removes the FrameAccess struct that was added to the interface
in D51537, since the PseudoValue from the MachineMemoryOperand
can be safely casted to a FixedStackPseudoSourceValue.
Reviewers: MatzeB, thegameg, javed.absar
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D51617
llvm-svn: 341454
For instructions that spill/fill to and from multiple frame-indices
in a single instruction, hasStoreToStackSlot and hasLoadFromStackSlot
should return an array of accesses, rather than just the first encounter
of such an access.
This better describes FI accesses for AArch64 (paired) LDP/STP
instructions.
Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar, MatzeB
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D51537
llvm-svn: 341301