If the load is conditional we can't hoist its 0-iteration instance to
the preheader because that would make it unconditional. Thus we would
access a memory location that the original loop did not access.
llvm-svn: 273991
This is a functional change for LLE and LDist. The other clients (LV,
LVerLICM) already had this explicitly enabled.
The temporary boolean parameter to LAA is removed that allowed turning
off speculation of symbolic strides. This makes LAA's caching interface
LAA::getInfo only take the loop as the parameter. This makes the
interface more friendly to the new Pass Manager.
The flag -enable-mem-access-versioning is moved from LV to a LAA which
now allows turning off speculation globally.
llvm-svn: 273064
This is currently only performed in the Vectorizer. I will change this
as symbolic stride collection is moved to LAA.
This test will track when the actual functional change occurs.
llvm-svn: 272918
isDependenceDistanceOfOne asserts that the store and the load access
through the same type. This function is also used by
removeDependencesFromMultipleStores so we need to make sure we filter
out mismatching types before reaching this point.
Now we do this when the initial candidates are gathered.
This is a refinement of the fix made in r262267.
Fixes PR27048.
llvm-svn: 264313
The code assumed that we always had a preheader without making the pass
dependent on LoopSimplify.
Thanks to Mattias Eriksson V for reporting this.
llvm-svn: 263173
I somehow missed this. The case in GCC (global_alloc) was similar to
the new testcase except it had an array of structs rather than a two
dimensional array.
Fixes RP26885.
llvm-svn: 263058
Summary:
LAA currently generates a set of SCEV predicates that must be checked by users.
In the case of Loop Distribute/Loop Load Elimination, no such predicates could have
been emitted, since we don't allow stride versioning. However, in the future there
could be SCEV predicates that will need to be checked.
This change adds support for SCEV predicate versioning in the Loop Distribute, Loop
Load Eliminate and the loop versioning infrastructure.
Reviewers: anemet
Subscribers: mssimpso, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D14240
llvm-svn: 252467
Summary:
The goal of this pass is to perform store-to-load forwarding across the
backedge of a loop. E.g.:
for (i)
A[i + 1] = A[i] + B[i]
=>
T = A[0]
for (i)
T = T + B[i]
A[i + 1] = T
The pass relies on loop dependence analysis via LoopAccessAnalisys to
find opportunities of loop-carried dependences with a distance of one
between a store and a load. Since it's using LoopAccessAnalysis, it was
easy to also add support for versioning away may-aliasing intervening
stores that would otherwise prevent this transformation.
This optimization is also performed by Load-PRE in GVN without the
option of multi-versioning. As was discussed with Daniel Berlin in
http://reviews.llvm.org/D9548, this is inferior to a more loop-aware
solution applied here. Hopefully, we will be able to remove some
complexity from GVN/MemorySSA as a consequence.
In the long run, we may want to extend this pass (or create a new one if
there is little overlap) to also eliminate loop-indepedent redundant
loads and store that *require* versioning due to may-aliasing
intervening stores/loads. I have some motivating cases for store
elimination. My plan right now is to wait for MemorySSA to come online
first rather than using memdep for this.
The main motiviation for this pass is the 456.hmmer loop in SPECint2006
where after distributing the original loop and vectorizing the top part,
we are left with the critical path exposed in the bottom loop. Being
able to promote the memory dependence into a register depedence (even
though the HW does perform store-to-load fowarding as well) results in a
major gain (~20%). This gain also transfers over to x86: it's
around 8-10%.
Right now the pass is off by default and can be enabled
with -enable-loop-load-elim. On the LNT testsuite, there are two
performance changes (negative number -> improvement):
1. -28% in Polybench/linear-algebra/solvers/dynprog: the length of the
critical paths is reduced
2. +2% in Polybench/stencils/adi: Unfortunately, I couldn't reproduce this
outside of LNT
The pass is scheduled after the loop vectorizer (which is after loop
distribution). The rational is to try to reuse LAA state, rather than
recomputing it. The order between LV and LLE is not critical because
normally LV does not touch scalar st->ld forwarding cases where
vectorizing would inhibit the CPU's st->ld forwarding to kick in.
LoopLoadElimination requires LAA to provide the full set of dependences
(including forward dependences). LAA is known to omit loop-independent
dependences in certain situations. The big comment before
removeDependencesFromMultipleStores explains why this should not occur
for the cases that we're interested in.
Reviewers: dberlin, hfinkel
Subscribers: junbuml, dberlin, mssimpso, rengolin, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D13259
llvm-svn: 252017