Cleaned up the Mutex::Locker and the ReadWriteLock classes a bit.
Also cleaned up the GDBRemoteCommunication class to not have so many packet functions. Used the "NoLock" versions of send/receive packet functions when possible for a bit of performance.
llvm-svn: 154458
Work around a deadlocking issue where "SBDebugger::MemoryPressureDetected ()" is being called and is causing a deadlock. We now just try and get the lock when trying to trim down the unique modules so we don't deadlock debugger GUI programs until we can find the root cause.
llvm-svn: 154339
Symbol files (dSYM files on darwin) can now be specified during program execution:
(lldb) target symbols add /path/to/symfile/a.out.dSYM/Contents/Resources/DWARF/a.out
This command can be used when you have a debug session in progress and want to add symbols to get better debug info fidelity.
llvm-svn: 153693
indicates that the section is thread specific. Any functions the load a module
given a slide, will currently ignore any sections that are thread specific.
lldb_private::Section now has:
bool
Section::IsThreadSpecific () const
{
return m_thread_specific;
}
void
Section::SetIsThreadSpecific (bool b)
{
m_thread_specific = b;
}
The ELF plug-in has been modified to set this for the ".tdata" and the ".tbss"
sections.
Eventually we need to have each lldb_private::Thread subclass be able to
resolve a thread specific section, but for now they will just not resolve. The
code for that should be trivual to add, but the address resolving functions
will need to be changed to take a "ExecutionContext" object instead of just
a target so that thread specific sections can be resolved.
llvm-svn: 153537
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
This fix really needed to happen as a previous fix I had submitted for
calculating symbol sizes made many symbols appear to have zero size since
the function that was calculating the symbol size was calling another function
that would cause the calculation to happen again. This resulted in some symbols
having zero size when they shouldn't. This could then cause infinite stack
traces and many other side affects.
llvm-svn: 152244
2) providing an updated list of tagged pointers values for the objc_runtime module - hopefully this one is final
3) changing ValueObject::DumpValueObject to use an Options class instead of providing a bulky list of parameters to pass around
this change had been laid out previously, but some clients of DumpValueObject() were still using the old prototype and some arguments
were treated in a special way and passed in directly instead of through the Options class
4) providing new GetSummaryAsCString() and GetValueAsCString() calls in ValueObject that are passed a formatter object and a destination string
and fill the string by formatting themselves using the formatter argument instead of the default for the current ValueObject
5) removing the option to have formats and summaries stick to a variable for the current stoppoint
after some debate, we are going with non-sticky: if you say frame variable --format hex foo, the hex format will only be applied to the current command execution and not stick when redisplaying foo
the other option would be full stickiness, which means that foo would be formatted as hex for its whole lifetime
we are open to suggestions on what feels "natural" in this regard
llvm-svn: 151801
more of the local path, platform path, associated symbol file, UUID, arch,
object name and object offset. This allows many of the calls that were
GetSharedModule to reduce the number of arguments that were used in a call
to these functions. It also allows a module to be created with a ModuleSpec
which allows many things to be specified prior to any accessors being called
on the Module class itself.
I was running into problems when adding support for "target symbol add"
where you can specify a stand alone debug info file after debugging has started
where I needed to specify the associated symbol file path and if I waited until
after construction, the wrong symbol file had already been located. By using
the ModuleSpec it allows us to construct a module with as little or as much
information as needed and not have to change the parameter list.
llvm-svn: 151476
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
Tracking modules down when you have a UUID and a path has been improved.
DynamicLoaderDarwinKernel no longer parses mach-o load commands and it
now uses the memory based modules now that we can load modules from memory.
Added a target setting named "target.exec-search-paths" which can be used
to supply a list of directories to use when trying to look for executables.
This allows one or more directories to be used when searching for modules
that may not exist in the SDK/PDK. The target automatically adds the directory
for the main executable to this list so this should help us in tracking down
shared libraries and other binaries.
llvm-svn: 150426
"target modules lookup" also work with the
"--function" option, so you can search for
functions that aren't inlined. This is the
same query that the expression parser makes, so
it's good for diagnosing situations where the
expression parser doesn't find a function you
think should be there.
llvm-svn: 150289
indicate whether inline functions are desired.
This allows the expression parser, for instance,
to filter out inlined functions when looking for
functions it can call.
llvm-svn: 150279
user space programs. The core file support is implemented by making a process
plug-in that will dress up the threads and stack frames by using the core file
memory.
Added many default implementations for the lldb_private::Process functions so
that plug-ins like the ProcessMachCore don't need to override many many
functions only to have to return an error.
Added new virtual functions to the ObjectFile class for extracting the frozen
thread states that might be stored in object files. The default implementations
return no thread information, but any platforms that support core files that
contain frozen thread states (like mach-o) can make a module using the core
file and then extract the information. The object files can enumerate the
threads and also provide the register state for each thread. Since each object
file knows how the thread registers are stored, they are responsible for
creating a suitable register context that can be used by the core file threads.
Changed the process CreateInstace callbacks to return a shared pointer and
to also take an "const FileSpec *core_file" parameter to allow for core file
support. This will also allow for lldb_private::Process subclasses to be made
that could load crash logs. This should be possible on darwin where the crash
logs contain all of the stack frames for all of the threads, yet the crash
logs only contain the registers for the crashed thrad. It should also allow
some variables to be viewed for the thread that crashed.
llvm-svn: 150154
Fixed "target modules list" (aliased to "image list") to output more information
by default. Modified the "target modules list" to have a few new options:
"--header" or "-h" => show the image header address
"--offset" or "-o" => show the image header address offset from the address in the file (the slide applied to the shared library)
Removed the "--symfile-basename" or "-S" option, and repurposed it to
"--symfile-unique" "-S" which will show the symbol file if it differs from
the executable file.
ObjectFile's can now be loaded from memory for cases where we don't have the
files cached locally in an SDK or net mounted root. ObjectFileMachO can now
read mach files from memory.
Moved the section data reading code into the ObjectFile so that the object
file can get the section data from Process memory if the file is only in
memory.
lldb_private::Module can now load its object file in a target with a rigid
slide (very common operation for most dynamic linkers) by using:
bool
Module::SetLoadAddress (Target &target, lldb::addr_t offset, bool &changed)
lldb::SBModule() now has a new constructor in the public interface:
SBModule::SBModule (lldb::SBProcess &process, lldb::addr_t header_addr);
This will find an appropriate ObjectFile plug-in to load an image from memory
where the object file header is at "header_addr".
llvm-svn: 149804
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
map that tracks all live Module classes. We must leak our mutex for our
collection class as it might be destroyed in an order we can't control.
llvm-svn: 149131
take a SymbolFile reference and a lldb::user_id_t and be used in objects
which represent things in debug symbols that have types where we don't need
to know the true type yet, such as in lldb_private::Variable objects. This
allows us to defer resolving the type until something is used. More specifically
this allows us to get 1000 local variables from the current function, and if
the user types "frame variable argc", we end up _only_ resolving the type for
"argc" and not for the 999 other local variables. We can expand the use of this
as needed in the future.
Modified the DWARFMappedHash class to be able to read the HashData that has
more than just the DIE offset. It currently will read the atoms in the header
definition and read the data correctly. Currently only the DIE offset and
type flags are supported. This is needed for adding type flags to the
.apple_types hash accelerator tables.
Fixed a assertion crash that would happen if we have a variable that had a
DW_AT_const_value instead of a location where "location.LocationContains_DW_OP_addr()"
would end up asserting when it tried to parse the variable location as a
DWARF opcode list.
Decreased the amount of memory that LLDB would use when evaluating an expression
by 3x - 4x for clang. There was a place in the namespace lookup code that was
parsing all namespaces with a certain name in a DWARF file instead of stopping
when it found the first match. This was causing all of the compile units with
a matching namespace to get parsed into memory and causing unnecessary memory
bloat.
Improved "Target::EvaluateExpression(...)" to not try and find a variable
when the expression contains characters that would certainly cause an expression
to need to be evaluated by the debugger.
llvm-svn: 146130
will allow us to represent a process/thread ID using a pointer for the OS
plug-ins where they might want to represent the process or thread ID using
the address of the process or thread structure.
llvm-svn: 145644
the thread specific data and were destroying the thread specfic data more
than once.
Also added the ability to ask a lldb::StateType if it is stopped with an
additional paramter of "must_exist" which means that the state must be a
stopped state for a process that still exists. This means that eStateExited
and eStateUnloaded will no longer return true if "must_exist" is set to true.
llvm-svn: 144875
This is the actual fix for the above radar where global variables that weren't
initialized were not being shown correctly when leaving the DWARF in the .o
files. Global variables that aren't intialized have symbols in the .o files
that specify they are undefined and external to the .o file, yet document the
size of the variable. This allows the compiler to emit a single copy, but makes
it harder for our DWARF in .o files with the executable having a debug map
because the symbol for the global in the .o file doesn't exist in a section
that we can assign a fixed up linked address to, and also the DWARF contains
an invalid address in the "DW_OP_addr" location (always zero). This means that
the DWARF is incorrect and actually maps all such global varaibles to the
first file address in the .o file which is usually the first function. So we
can fix this in either of two ways: make a new fake section in the .o file
so that we have a file address in the .o file that we can relink, or fix the
the variable as it is created in the .o file DWARF parser and actually give it
the file address from the executable. Each variable contains a
SymbolContextScope, or a single pointer that helps us to recreate where the
variables came from (which module, file, function, etc). This context helps
us to resolve any file addresses that might be in the location description of
the variable by pointing us to which file the file address comes from, so we
can just replace the SymbolContextScope and also fix up the location, which we
would have had to do for the other case as well, and update the file address.
Now globals display correctly.
The above changes made it possible to determine if a variable is a global
or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag
for each variable (local, global, or static), yet DWARF provides no way for
us to classify these variables into these categories. We can now detect when
a variable has a simple address expressions as its location and this will help
us classify these correctly.
While making the above changes I also noticed that we had two symbol types:
eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same
thing: the symbol is not defined in the current object file. Symbol objects
also have a bit that specifies if a symbol is externally visible, so I got
rid of the eSymbolTypeExtern symbol type and moved all code locations that
used it to use the eSymbolTypeUndefined type.
llvm-svn: 144489
the argument description in the command name could cause a command
alias to crash, e.g.
command alias zzz target stop-hook delete 1
because the "name" is used to re-fetch the exact CommandObject when
adding the final arg.
<rdar://problem/10423753>
llvm-svn: 144330
in the same hashed format as the ".apple_names", but they map objective C
class names to all of the methods and class functions. We need to do this
because in the DWARF the methods for Objective C are never contained in the
class definition, they are scattered about at the translation unit level and
they don't even have attributes that say the are contained within the class
itself.
Added 3 new formats which can be used to display data:
eFormatAddressInfo
eFormatHexFloat
eFormatInstruction
eFormatAddressInfo describes an address such as function+offset and file+line,
or symbol + offset, or constant data (c string, 2, 4, 8, or 16 byte constants).
The format character for this is "A", the long format is "address".
eFormatHexFloat will print out the hex float format that compilers tend to use.
The format character for this is "X", the long format is "hex float".
eFormatInstruction will print out disassembly with bytes and it will use the
current target's architecture. The format character for this is "i" (which
used to be being used for the integer format, but the integer format also has
"d", so we gave the "i" format to disassembly), the long format is
"instruction".
Mate the lldb::FormatterChoiceCriterion enumeration private as it should have
been from the start. It is very specialized and doesn't belong in the public
API.
llvm-svn: 143114
lldb_private::Error objects the rules are:
- short strings that don't start with a capitol letter unless the name is a
class or anything else that is always capitolized
- no trailing newline character
- should be one line if possible
Implemented a first pass at adding "--gdb-format" support to anything that
accepts format with optional size/count.
llvm-svn: 142999
OptionGroupFormat. Updated OptionGroupFormat to be able to also use the
"--size" and "--count" options. Commands that use a OptionGroupFormat instance
can choose which of the options they want by initializing OptionGroupFormat
accordingly. Clients can either get only the "--format", "--format" + "--size",
or "--format" + "--size" + "--count". This is in preparation for upcoming
chnages where there are alternate ways (GDB format specification) to set a
format.
llvm-svn: 142911
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
Fixed up DWARFDebugAranges to use the new range classes.
Fixed the enumeration parsing to take a lldb_private::Error to avoid a lot of duplicated code. Now when an invalid enumeration is supplied, an error will be returned and that error will contain a list of the valid enumeration values.
llvm-svn: 141382
symbol context that represents an inlined function. This function has been
renamed internally to:
bool
SymbolContext::GetParentOfInlinedScope (const Address &curr_frame_pc,
SymbolContext &next_frame_sc,
Address &next_frame_pc) const;
And externally to:
SBSymbolContext
SBSymbolContext::GetParentOfInlinedScope (const SBAddress &curr_frame_pc,
SBAddress &parent_frame_addr) const;
The correct blocks are now correctly calculated.
Switched the stack backtracing engine (in StackFrameList) and the address
context printing over to using the internal SymbolContext::GetParentOfInlinedScope(...)
so all inlined callstacks will match exactly.
llvm-svn: 140910
- New SBSection objects that are object file sections which can be accessed
through the SBModule classes. You can get the number of sections, get a
section at index, and find a section by name.
- SBSections can contain subsections (first find "__TEXT" on darwin, then
us the resulting SBSection to find "__text" sub section).
- Set load addresses for a SBSection in the SBTarget interface
- Set the load addresses of all SBSection in a SBModule in the SBTarget interface
- Add a new module the an existing target in the SBTarget interface
- Get a SBSection from a SBAddress object
This should get us a lot closer to being able to symbolicate using LLDB through
the public API.
llvm-svn: 140437
return before we try to dereference the target later in the function.
Currently,
% lldb -x
(lldb) target stop-hook list
crashes because of this.
llvm-svn: 140417
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
__attribute__ format so the compiler knows that this method takes
printf style formatter arguments and checks that it's being used
correctly. Fix a couple dozen incorrect SetErrorStringWithFormat()
calls throughout the sources.
llvm-svn: 140115
ModuleSP
Module::GetSP();
Since we are now using intrusive ref counts, we can easily turn any
pointer to a module into a shared pointer just by assigning it.
llvm-svn: 139984