Summary:
CoroSplit depends on CallGraphWrapperPass, but it was not explicitly adding it as a pass dependency.
This missing dependency can trigger errors / assertions / crashes in PMTopLevelManager::schedulePass() under certain configurations.
Author: ben-clayton
Reviewers: GorNishanov
Reviewed By: GorNishanov
Subscribers: capn, EricWF, modocache, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63144
llvm-svn: 363727
Summary:
CoroFrame was not considering static array allocas, and was only ever reserving a single element in the coroutine frame.
This meant that stores to the non-zero'th element would corrupt later frame data.
Store static array allocas as field arrays in the coroutine frame.
Added test.
Committed by Gor Nishanov on behalf of ben-clayton
Reviewers: GorNishanov, modocache
Reviewed By: GorNishanov
Subscribers: Orlando, capn, EricWF, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61372
llvm-svn: 360636
code to `CallBase`.
This patch focuses on the legacy PM, call graph, and some of inliner and legacy
passes interacting with those APIs from `CallSite` to the new `CallBase` class.
No interesting changes.
Differential Revision: https://reviews.llvm.org/D60412
llvm-svn: 358739
Summary:
Depends on https://reviews.llvm.org/D59069.
https://bugs.llvm.org/show_bug.cgi?id=40979 describes a bug in which the
-coro-split pass would assert that a use was across a suspend point from
a definition. Normally this would mean that a value would "spill" across
a suspend point and thus need to be stored in the coroutine frame. However,
in this case the use was unreachable, and so it would not be necessary
to store the definition on the frame.
To prevent the assert, simply remove unreachable basic blocks from a
coroutine function before computing spills. This avoids the assert
reported in PR40979.
Reviewers: GorNishanov, tks2103
Reviewed By: GorNishanov
Subscribers: EricWF, jdoerfert, llvm-commits, lewissbaker
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59068
llvm-svn: 355852
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57170
llvm-svn: 352909
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Enable suspend point simplification for cases where:
* coro.save and coro.suspend are in different basic blocks
* where there are intervening intrinsics
Reviewers: modocache, tks2103, lewissbaker
Reviewed By: modocache
Subscribers: EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D55160
llvm-svn: 348897
This removes the primary remaining API producing `TerminatorInst` which
will reduce the rate at which code is introduced trying to use it and
generally make it much easier to remove the remaining APIs across the
codebase.
Also clean up some of the stragglers that the previous mechanical update
of variables missed.
Users of LLVM and out-of-tree code generally will need to update any
explicit variable types to handle this. Replacing `TerminatorInst` with
`Instruction` (or `auto`) almost always works. Most of these edits were
made in prior commits using the perl one-liner:
```
perl -i -ple 's/TerminatorInst(\b.* = .*getTerminator\(\))/Instruction\1/g'
```
This also my break some rare use cases where people overload for both
`Instruction` and `TerminatorInst`, but these should be easily fixed by
removing the `TerminatorInst` overload.
llvm-svn: 344504
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
`isExceptionalTermiantor` and implement it for opcodes as well following
the common pattern in `Instruction`.
Part of removing `TerminatorInst` from the `Instruction` type hierarchy
to make it easier to share logic and interfaces between instructions
that are both terminators and not terminators.
llvm-svn: 340699
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)
llvm-svn: 333954
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Summary:
https://bugs.llvm.org/show_bug.cgi?id=34897 demonstrates an incorrect
coroutine frame allocation elision in the coro-elide pass. The elision
is performed on the basis that the SSA variables from all llvm.coro.begin
are directly referenced in subsequent llvm.coro.destroy instructions.
However, this ignores the fact that the function may exit through paths
that do not run these destroy instructions. In the sample program from
PR34897, for example, the llvm.coro.destroy instruction is only
executed in exception handling code. When the coroutine function exits
normally, llvm.coro.destroy is not called. Eliding the allocation in
this case causes a subsequent reference to the coroutine handle from
outside of the function to access freed memory.
To fix the issue, when finding an llvm.coro.destroy for each llvm.coro.begin,
only consider llvm.coro.destroy that are executed along non-exceptional paths.
Test Plan:
1. Download the sample program from
https://bugs.llvm.org/show_bug.cgi?id=34897, compile it with
`clang++ -fcoroutines-ts -stdlib=libc++ -std=c++1z -O2`, and run it.
It should print `"run1\ncheck1\nrun2\ncheck2"` and then exit
successfully.
2. Compile https://godbolt.org/g/mCKfnr and confirm it is still
optimized to a single instruction, 'return 1190'.
3. `check-llvm`
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: andrewrk, lewissbaker, EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D43242
llvm-svn: 332077
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: kcc, pcc, danielcdh, jmolloy, sanjoy, dberlin, ruiu
Reviewed By: ruiu
Subscribers: ruiu, llvm-commits
Differential Revision: https://reviews.llvm.org/D45142
llvm-svn: 330059
Summary:
If an alloca need to be stored in the coroutine frame and it has an alignment specified and the alignment does not match the natural alignment of the alloca type. Insert appropriate padding into the coroutine frame to make sure that it gets requested alignment.
For example for a packet type (which natural alignment is 1), but alloca alignment is 8, we may need to insert a padding field with required number of bytes to make sure it is properly aligned.
```
%PackedStruct = type <{ i64 }>
...
%data = alloca %PackedStruct, align 8
```
If the previous field in the coroutine frame had alignment 2, we would have [6 x i8] inserted before %PackedStruct in the coroutine frame:
```
%f.Frame = type { ..., i16, [6 x i8], %PackedStruct }
```
Reviewers: rnk, lewissbaker, modocache
Reviewed By: modocache
Subscribers: EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D45221
llvm-svn: 329112
Summary:
When attempting to split a coroutine with 'hidden' visibility (for
example, a C++ coroutine that is inlined when compiled with the option
'-fvisibility-inlines-hidden'), LLVM would hit an assertion in
include/llvm/IR/GlobalValue.h:240: "local linkage requires default
visibility". The issue is that the visibility is copied from the source
of the function split in the `CloneFunctionInto` function, but the linkage
is not. To fix, create the new function first with external linkage,
then copy the linkage from the original function *after* `CloneFunctionInto`
is called.
Since `GlobalValue::setLinkage` in turn calls `maybeSetDsoLocal`, the
explicit call to `setDSOLocal` can be removed in CoroSplit.cpp.
Test Plan: check-llvm
Reviewers: GorNishanov, lewissbaker, EricWF, majnemer, rnk
Reviewed By: rnk
Subscribers: llvm-commits, eric_niebler
Differential Revision: https://reviews.llvm.org/D44185
llvm-svn: 329033
Summary:
A recent addition to Coroutines TS (https://wg21.link/p0913) adds a pre-defined coroutine noop_coroutine that does nothing.
To implement this feature, we implemented an llvm.coro.noop intrinsic that returns a coroutine handle to a coroutine that does nothing when resumed or destroyed.
Reviewers: EricWF, modocache, rnk, lewissbaker
Reviewed By: modocache
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45114
llvm-svn: 328986
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
Summary:
Move a debug statement to above where an assertion is hit, so that the debug
statement can be inspected before a stack trace.
Test Plan: `check-llvm`
llvm-svn: 325529
Summary:
The behavior described in Coroutines TS `[dcl.fct.def.coroutine]/7`
allows coroutine parameters to be passed into allocator functions.
The instructions to store values into the alloca'd parameters must not
be moved past the frame allocation, otherwise uninitialized values are
passed to the allocator.
Test Plan: `check-llvm`
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: compnerd, EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D43000
llvm-svn: 325285
While updating clang tests for having clang set dso_local I noticed
that:
- There are *a lot* of tests to update.
- Many of the updates are redundant.
They are redundant because a GV is "obviously dso_local". This patch
starts formalizing that a bit by requiring that internal and private
GVs be dso_local too. Since they all are, we don't have to print
dso_local to the textual representation, making it a bit more compact
and easier to read.
llvm-svn: 322317
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
Summary:
Add musttail to any resume instructions that is immediately followed by a
suspend (i.e. ret). We do this even in -O0 to support guaranteed tail call
for symmetrical coroutine control transfer (C++ Coroutines TS extension).
This transformation is done only in the resume part of the coroutine that has
identical signature and calling convention as the coro.resume call.
Reviewers: GorNishanov
Reviewed By: GorNishanov
Subscribers: EricWF, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D37125
llvm-svn: 311751
Summary:
If a coroutine outer calls another coroutine inner and the inner coroutine body is inlined into the outer, coro.begin from the inner coroutine should be considered for spilling if accessed across suspends.
Prior to this change, coroutine frame building code was not considering any coro.begins for spilling.
With this change, we only ignore coro.begin for the current coroutine, but, any coro.begins that were inlined into the current coroutine are eligible for spills.
Fixes PR34267
Reviewers: GorNishanov
Subscribers: qcolombet, llvm-commits, EricWF
Differential Revision: https://reviews.llvm.org/D37062
llvm-svn: 311556
The style guide states that the explicit `inline`
should not be used with inline methods. classof is
very common inline method with a fair amount on
inconsistency:
$ git grep classof ./include | grep inline | wc -l
230
$ git grep classof ./include | grep -v inline | wc -l
257
I chose to target this method rather the larger change
since this method is easily cargo-culted (I did it at
least once). I considered doing the larger change and
removing all occurrences but that would be a much larger
change.
Differential Revision: https://reviews.llvm.org/D33906
llvm-svn: 306731
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary:
Optimization passes may remove llvm.coro.suspend intrinsic while leaving matching llvm.coro.save intrinsic orphaned.
Make sure we clean up orphaned coro.saves. The bug manifested with a crash similar to this:
```
llvm_unreachable("Unknown type!");
llvm::MVT::getVT (Ty=0x489518, HandleUnknown=false)
llvm::EVT::getEVT
llvm::TargetLoweringBase::getValueType
llvm::ComputeValueVTs
llvm::SelectionDAGBuilder::visitTargetIntrinsic
```
Reviewers: GorNishanov
Subscribers: EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D33817
llvm-svn: 304518
This was rL304226, reverted in 304228 due to a clang assertion failure
on the build bots. That problem should have been addressed by clang
commit rL304470.
llvm-svn: 304488
Summary:
In rL302576, DISubprograms gained the constraint that a !dbg attachments to functions must
have a 1:1 mapping to DISubprograms. As part of that change, the function cloning support
was adjusted to attempt to enforce this invariant during cloning. However, there
were several problems with the implementation. Part of these were fixed in rL304079.
However, there was a more fundamental problem with these changes, namely that it
bypasses the matadata value map, causing the cloned metadata to be a mix of metadata
pointing to the new suprogram (where manual code was added to fix those up) and the
old suprogram (where this was not the case). This mismatch could cause a number of
different assertion failures in the DWARF emitter. Some of these are given at
https://github.com/JuliaLang/julia/issues/22069, but some others have been observed
as well. Attempt to rectify this by partially reverting the manual DI metadata fixup,
and instead using the standard value map approach. To retain the desired semantics
of not duplicating the compilation unit and inlined subprograms, explicitly freeze
these in the value map.
Reviewers: dblaikie, aprantl, GorNishanov, echristo
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33655
llvm-svn: 304226
Summary:
I believe https://reviews.llvm.org/rL302576 introduced two bugs:
1) it produces duplicate distinct variables for every: dbg.value describing the same variable.
To fix the problme I switched form getDistinct() to get() in DebugLoc.cpp: auto reparentVar = [&](DILocalVariable *Var) {
return DILocalVariable::getDistinct(
2) It passes NewFunction plain name as a linkagename parameter to Subprogram constructor. Breaks assert in:
|| DeclLinkageName.empty()) || LinkageName == DeclLinkageName) && "decl has a linkage name and it is different"' failed.
#9 0x00007f5010261b75 llvm::DwarfUnit::applySubprogramDefinitionAttributes(llvm::DISubprogram const*, llvm::DIE&) /home/gor/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp:1173:3
#
(Edit: reproducer added)
Here how https://reviews.llvm.org/rL302576 broke coroutine debug info.
Coroutine body of the original function is split into several parts by cloning and removing unneeded code.
All parts describe the original function and variables present in the original function.
For a simple case, prior to Split, original function has these two blocks:
```
PostSpill: ; preds = %AllocaSpillBB
call void @llvm.dbg.value(metadata i32 %x, i64 0, metadata !14, metadata !15), !dbg !13
store i32 %x, i32* %x.addr, align 4
...
and
sw.epilog: ; preds = %sw.bb
%x.addr.reload.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0, i32 4, !dbg !20
%4 = load i32, i32* %x.addr.reload.addr, align 4, !dbg !20
call void @llvm.dbg.value(metadata i32 %4, i64 0, metadata !14, metadata !15), !dbg !13!14 = !DILocalVariable(name: "x", arg: 1, scope: !6, file: !7, line: 55, type: !11)
```
Note that in two blocks different expression represent the same original user variable X.
Before rL302576, for every cloned function there was exactly one cloned DILocalVariable(name: "x" as in:
```
define i8* @f(i32 %x) #0 !dbg !6 {
...
!6 = distinct !DISubprogram(name: "f", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55, flags: DIFlagPrototyped,
...
!14 = !DILocalVariable(name: "x", arg: 1, scope: !6, file: !7, line: 55, type: !11)
define internal fastcc void @f.resume(%f.Frame* %FramePtr) #0 !dbg !25 {
...
!25 = distinct !DISubprogram(name: "f", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55, flags: DIFlagPrototyped, isOptimized: false, unit: !0, variables: !2)
!28 = !DILocalVariable(name: "x", arg: 1, scope: !25, file: !7, line: 55, type: !11)
```
After rL302576, for every cloned function there were as many DILocalVariable(name: "x" as there were "call void @llvm.dbg.value" for that variable.
This was causing asserts in VerifyDebugInfo and AssemblyPrinter.
Example:
```
!27 = distinct !DISubprogram(name: "f", linkageName: "f.resume", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55,
!29 = distinct !DILocalVariable(name: "x", arg: 1, scope: !27, file: !7, line: 55, type: !11)
!39 = distinct !DILocalVariable(name: "x", arg: 1, scope: !27, file: !7, line: 55, type: !11)
!41 = distinct !DILocalVariable(name: "x", arg: 1, scope: !27, file: !7, line: 55, type: !11)
```
Second problem:
Prior to rL302576, all clones were described by DISubprogram referring to original function.
```
define i8* @f(i32 %x) #0 !dbg !6 {
...
!6 = distinct !DISubprogram(name: "f", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55, flags: DIFlagPrototyped,
define internal fastcc void @f.resume(%f.Frame* %FramePtr) #0 !dbg !25 {
...
!25 = distinct !DISubprogram(name: "f", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55, flags: DIFlagPrototyped,
```
After rL302576, DISubprogram for clones is of two minds, plain name refers to the original name, linkageName refers to plain name of the clone.
```
!27 = distinct !DISubprogram(name: "f", linkageName: "f.resume", scope: !7, file: !7, line: 55, type: !8, isLocal: false, isDefinition: true, scopeLine: 55,
```
I think the assumption in AsmPrinter is that both name and linkageName should refer to the same entity. It asserts here when they are not:
```
|| DeclLinkageName.empty()) || LinkageName == DeclLinkageName) && "decl has a linkage name and it is different"' failed.
#9 0x00007f5010261b75 llvm::DwarfUnit::applySubprogramDefinitionAttributes(llvm::DISubprogram const*, llvm::DIE&) /home/gor/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp:1173:3
```
After this fix, behavior (with respect to coroutines) reverts to exactly as it was before and therefore making them debuggable again, or even more importantly, compilable, with "-g"
Reviewers: dblaikie, echristo, aprantl
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33614
llvm-svn: 304079
Summary:
Frontend generates store instructions after allocas, for example:
```
define i8* @f(i64 %this) "coroutine.presplit"="1" personality i32 0 {
entry:
%this.addr = alloca i64
store i64 %this, i64* %this.addr
..
%hdl = call i8* @llvm.coro.begin(token %id, i8* %alloc)
```
Such instructions may require spilling into coro.frame, but, coro-frame address is only available after coro.begin and thus needs to be moved after coro.begin.
The only instructions that should not be moved are the arguments of coro.begin and all of their operands.
Reviewers: GorNishanov, majnemer
Reviewed By: GorNishanov
Subscribers: llvm-commits, EricWF
Differential Revision: https://reviews.llvm.org/D33527
llvm-svn: 303825
If we need to spill the result of the PHI instruction, we insert the spill after
all of the PHIs and EHPads, however, in a catchswitch block there is no
room to insert the spill. Make room by splitting away catchswitch into a separate
block.
Before the fix:
catch.dispatch:
%val = phi i32 [ 1, %if.then ], [ 2, %if.else ]
%switch = catchswitch within none [label %catch] unwind label %cleanuppad
After:
catch.dispatch:
%val = phi i32 [ 1, %if.then ], [ 2, %if.else ]
%tok = cleanuppad within none []
; spill goes here
cleanupret from %tok unwind label %catch.dispatch.switch
catch.dispatch.switch:
%switch = catchswitch within none [label %catch] unwind label %cleanuppad
https://reviews.llvm.org/D31846
llvm-svn: 303232