Commit Graph

149 Commits

Author SHA1 Message Date
Nemanja Ivanovic ae22101c55 Fix for PR 26500
This patch corresponds to review:
http://reviews.llvm.org/D17294

It ensures that whatever block we are emitting the prologue/epilogue into, we
have the necessary scratch registers. It takes away the hard-coded register
numbers for use as scratch registers as registers that are guaranteed to be
available in the function prologue/epilogue are not guaranteed to be available
within the function body. Since we shrink-wrap, the prologue/epilogue may end
up in the function body.

llvm-svn: 261441
2016-02-20 18:16:25 +00:00
Craig Topper e5e035a3a8 Replace uint16_t with the MCPhysReg typedef in many places. A lot of physical register arrays already use this typedef.
llvm-svn: 254843
2015-12-05 07:13:35 +00:00
Alexey Samsonov 39b7d65d82 [PowerPC] Remove wild call to RegScavenger::initRegState().
This call should in fact be made by RegScavenger::enterBasicBlock()
called below. The first call does nothing except for triggering UB,
indicated by UBSan (passing nullptr to memset()).

llvm-svn: 254548
2015-12-02 21:25:28 +00:00
Kit Barton f4ce2f3a9e Enable shrink wrapping for PPC64
Re-enable shrink wrapping for PPC64 Little Endian.

One minor modification to PPCFrameLowering::findScratchRegister was necessary to handle fall-thru blocks (blocks with no terminator) correctly.

Tested with all LLVM test, clang tests, and the self-hosting build, with no problems found.

PHabricator: http://reviews.llvm.org/D14778
llvm-svn: 254314
2015-11-30 18:59:41 +00:00
Kit Barton 9c432ae111 Find available scratch register to use in function prologue and epilogue as part of shrink wrapping.
Phabricator: http://reviews.llvm.org/D13955
llvm-svn: 253247
2015-11-16 20:22:15 +00:00
Hal Finkel 4c45775880 [PowerPC] Disable shrink wrapping
Shrink wrapping is causing a self-hosting failure on PPC64/Linux. Disable for
now until the problem can be fixed.

llvm-svn: 248924
2015-09-30 17:29:03 +00:00
Matthias Braun c2d4befb54 MachineBasicBlock: Factor out common code into isReturnBlock()
llvm-svn: 248617
2015-09-25 21:25:19 +00:00
NAKAMURA Takumi 8061e8645f PPCFrameLowering::emitEpilogue(): Avoid manipulating MBBI on iterator end.
It caused crash in MachineInstr::hasPropertyInBundle() since r247237.

llvm-svn: 247395
2015-09-11 08:20:56 +00:00
Kit Barton d3b904d440 Enable the shrink wrapping optimization for PPC64.
The changes in this patch are as follows:
  1. Modify the emitPrologue and emitEpilogue methods to work properly when the prologue and epilogue blocks are not the first/last blocks in the function
  2. Fix a bug in PPCEarlyReturn optimization caused by an empty entry block in the function
  3. Override the runShrinkWrap PredicateFtor (defined in TargetMachine) to check whether shrink wrapping should run:
      Shrink wrapping will run on PPC64 (Little Endian and Big Endian) unless -enable-shrink-wrap=false is specified on command line

A new test case, ppc-shrink-wrapping.ll was created based on the existing shrink wrapping tests for x86, arm, and arm64.

Phabricator review: http://reviews.llvm.org/D11817

llvm-svn: 247237
2015-09-10 01:55:44 +00:00
Saleem Abdulrasool 3e190cb098 PowerPC: remove dead initialization (NFC)
Identified by the clang static analyzer.  No functional change intended.

llvm-svn: 245022
2015-08-14 03:48:35 +00:00
Matthias Braun 9912bb817c MachineRegisterInfo: Remove UsedPhysReg infrastructure
We have a detailed def/use lists for every physical register in
MachineRegisterInfo anyway, so there is little use in maintaining an
additional bitset of which ones are used.

Removing it frees us from extra book keeping. This simplifies
VirtRegMap.

Differential Revision: http://reviews.llvm.org/D10911

llvm-svn: 242173
2015-07-14 17:52:07 +00:00
Matthias Braun 0256486532 PrologEpilogInserter: Rewrite API to determine callee save regsiters.
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():

- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
  the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
  physcial registers which are only read but never modified.

Related to rdar://21539507

Differential Revision: http://reviews.llvm.org/D10909

llvm-svn: 242165
2015-07-14 17:17:13 +00:00
Quentin Colombet 61b305edfd [ShrinkWrap] Add (a simplified version) of shrink-wrapping.
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.

As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.


** Context **

Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.


** Motivating example **

Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b)  {
 %tmp = alloca i32, align 4
 %tmp2 = icmp slt i32 %a, %b
 br i1 %tmp2, label %true, label %false

true:
 store i32 %a, i32* %tmp, align 4
 %tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
 br label %false

false:
 %tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
 ret i32 %tmp.0
}

On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f:                                     ; @f
; BB#0:
  stp x29, x30, [sp, #-16]!
  mov  x29, sp
  sub sp, sp, #16             ; =16
  cmp  w0, w1
  b.ge  LBB0_2
; BB#1:                                 ; %true
  stur  w0, [x29, #-4]
  sub x1, x29, #4             ; =4
  mov  w0, wzr
  bl  _doSomething
LBB0_2:                                 ; %false
  mov  sp, x29
  ldp x29, x30, [sp], #16
  ret

With shrink-wrapping we could generate:
_f:                                     ; @f
; BB#0:
  cmp  w0, w1
  b.ge  LBB0_2
; BB#1:                                 ; %true
  stp x29, x30, [sp, #-16]!
  mov  x29, sp
  sub sp, sp, #16             ; =16
  stur  w0, [x29, #-4]
  sub x1, x29, #4             ; =4
  mov  w0, wzr
  bl  _doSomething
  add sp, x29, #16            ; =16
  ldp x29, x30, [sp], #16
LBB0_2:                                 ; %false
  ret

Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.


** Proposed Solution **

This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.

Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.

The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.

Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.


** Design Decisions **

1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
  pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.

Differential Revision: http://reviews.llvm.org/D9210

<rdar://problem/3201744>

llvm-svn: 236507
2015-05-05 17:38:16 +00:00
Hal Finkel c93a9a2cb4 [PowerPC] Add support for the QPX vector instruction set
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially  { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).

I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).

The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.

llvm-svn: 230413
2015-02-25 01:06:45 +00:00
Chandler Carruth 003ed332bf Remove a variable only used in an assert and sink its initializer into
the assert. Fixes -Wunused-variable on non-asserts builds.

llvm-svn: 229250
2015-02-14 09:14:44 +00:00
Duncan P. N. Exon Smith 5bedaf934f PowerPC: Canonicalize access to function attributes, NFC
Canonicalize access to function attributes to use the simpler API.

getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
  => getFnAttribute(Kind)

getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
  => hasFnAttribute(Kind)

llvm-svn: 229224
2015-02-14 02:54:07 +00:00
Eric Christopher fcd3d87ad8 The base pointer save offset can be computed at initialization time,
do so and fix up the calls.

llvm-svn: 229169
2015-02-13 22:48:53 +00:00
Eric Christopher a4ae213193 PPC LinkageSize can be computed at initialization time, do so.
llvm-svn: 229163
2015-02-13 22:22:57 +00:00
Eric Christopher dc3a8a4a66 PPCFrameLowering's FramePointerOffset can be computed at initialization
time. Do so.

llvm-svn: 228998
2015-02-13 00:39:38 +00:00
Eric Christopher 736d39e189 The TOC save offset can be computed at compile time, do so and
propagate changes.

llvm-svn: 228997
2015-02-13 00:39:36 +00:00
Eric Christopher f71609b5dd The return save offset can be computed at initialization time - do
so and save the value.

llvm-svn: 228996
2015-02-13 00:39:27 +00:00
Bill Schmidt 82f1c775a0 [PowerPC] Fix reverted patch r227976 to avoid register assignment issues
See full discussion in http://reviews.llvm.org/D7491.

We now hide the add-immediate and call instructions together in a
separate pseudo-op, which is tagged to define GPR3 and clobber the
call-killed registers.  The PPCTLSDynamicCall pass prior to RA now
expands this op into the two separate addi and call ops, with explicit
definitions of GPR3 on both instructions, and explicit clobbers on the
call instruction.  The pass is now marked as requiring and preserving
the LiveIntervals and SlotIndexes analyses, and fixes these up after
the replacement sequences are introduced.

Self-hosting has been verified on LE P8 and BE P7 with various
optimization levels, etc.  It has also been verified with the
--no-tls-optimize flag workaround removed.

llvm-svn: 228725
2015-02-10 19:09:05 +00:00
Hal Finkel 0d2a1515d5 Revert "r227976 - [PowerPC] Yet another approach to __tls_get_addr" and related fixups
Unfortunately, even with the workaround of disabling the linker TLS
optimizations in Clang restored (which has already been done), this still
breaks self-hosting on my P7 machine (-O3 -DNDEBUG -mcpu=native).

Bill is currently working on an alternate implementation to address the TLS
issue in a way that also fully elides the linker bug (which, unfortunately,
this approach did not fully), so I'm reverting this now.

llvm-svn: 228460
2015-02-06 23:07:40 +00:00
Bill Schmidt 685aa8b0c5 [PowerPC] Yet another approach to __tls_get_addr
This patch is a third attempt to properly handle the local-dynamic and
global-dynamic TLS models.

In my original implementation, calls to __tls_get_addr were hidden
from view until the asm-printer phase, at which point the underlying
branch-and-link instruction was created with proper relocations.  This
mostly worked well, but I used some repellent techniques to ensure
that the TLS_GET_ADDR nodes at the SD and MI levels correctly received
input from GPR3 and produced output into GPR3.  This proved to work
badly in the presence of multiple TLS variable accesses, with the
copies to and from GPR3 being scheduled incorrectly and generally
creating havoc.

In r221703, I addressed that problem by representing the calls to
__tls_get_addr as true calls during instruction lowering.  This had
the advantage of removing all of the bad hacks and relying on the
existing call machinery to properly glue the copies in place. It
looked like this was going to be the right way to go.

However, as a side effect of the recent discovery of problems with
linker optimizations for TLS, we discovered cases of suboptimal code
generation with this strategy.  The problem comes when tls_get_addr is
called for the same address, and there is a resulting CSE
opportunity.  It turns out that in such cases MachineCSE will common
the addis/addi instructions that set up the input value to
tls_get_addr, but will not common the calls themselves.  MachineCSE
does not have any machinery to common idempotent calls.  This is
perfectly sensible, since presumably this would be done at the IR
level, and introducing calls in the back end isn't commonplace.  In
any case, we end up with two calls to __tls_get_addr when one would
suffice, and that isn't good.

I presumed that the original design would have allowed commoning of
the machine-specific nodes that hid the __tls_get_addr calls, so as
suggested by Ulrich Weigand, I went back to that design and cleaned it
up so that the copies were properly held together by glue
nodes.  However, it turned out that this didn't work either...the
presence of copies to physical registers kept the machine-specific
nodes from being commoned also.

All of which leads to the design presented here.  This is a return to
the original design, except that no attempt is made to introduce
copies to and from GPR3 during instruction lowering.  Virtual registers
are used until prior to register allocation.  At that point, a special
pass is run that identifies the machine-specific nodes that hide the
tls_get_addr calls and introduces the copies to and from GPR3 around
them.  The register allocator then coalesces these copies away.  With
this design, MachineCSE succeeds in commoning tls_get_addr calls where
possible, and we get nice optimal code generation (better than GCC at
the moment, which does not common these calls).

One additional problem must be dealt with:  After introducing the
mentions of the physical register GPR3, the aggressive anti-dependence
breaker sees opportunities to improve scheduling by selecting a
different register instead.  Flags must be used on the instruction
descriptions to tell the anti-dependence breaker to keep its hands in
its pockets.

One thing missing from the original design was recording a definition
of the link register on the GET_TLS_ADDR nodes.  Doing this was found
to be insufficient to force a stack frame to be created, which led to
looping behavior because two different LR values were stored at the
same address.  This appears to have been an oversight in
PPCFrameLowering::determineFrameLayout(), which is repaired here.

Because MustSaveLR() returns true for calls to builtin_return_address,
this changed the expected behavior of
test/CodeGen/PowerPC/retaddr2.ll, which now stacks a frame but
formerly did not.  I've fixed the test case to reflect this.

There are existing TLS tests to catch regressions; the checks in
test/CodeGen/PowerPC/tls-store2.ll proved to be too restrictive in the
face of instruction scheduling with these changes, so I fixed that
up.

I've added a new test case based on the PrettyStackTrace module that
demonstrated the original problem. This checks that we get correct
code generation and that CSE of the calls to __get_tls_addr has taken
place.

llvm-svn: 227976
2015-02-03 16:16:01 +00:00
Eric Christopher cccae7951c Use the cached subtargets and remove calls to getSubtarget/getSubtargetImpl
without a Function argument.

llvm-svn: 227622
2015-01-30 22:02:31 +00:00
Eric Christopher 38522b8867 Use the cached subtarget in PPCFrameLowering.
llvm-svn: 227548
2015-01-30 02:11:26 +00:00
Hal Finkel 934361a4b8 Revert "r225811 - Revert "r225808 - [PowerPC] Add StackMap/PatchPoint support""
This re-applies r225808, fixed to avoid problems with SDAG dependencies along
with the preceding fix to ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs.
These problems caused the original regression tests to assert/segfault on many
(but not all) systems.

Original commit message:

This commit does two things:

 1. Refactors PPCFastISel to use more of the common infrastructure for call
    lowering (this lets us take advantage of this common code for lowering some
    common intrinsics, stackmap/patchpoint among them).

 2. Adds support for stackmap/patchpoint lowering. For the most part, this is
    very similar to the support in the AArch64 target, with the obvious differences
    (different registers, NOP instructions, etc.). The test cases are adapted
    from the AArch64 test cases.

One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).

StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!

llvm-svn: 225909
2015-01-14 01:07:51 +00:00
Hal Finkel 63fb928109 Revert "r225808 - [PowerPC] Add StackMap/PatchPoint support"
Reverting this while I investiage buildbot failures (segfaulting in
GetCostForDef at ScheduleDAGRRList.cpp:314).

llvm-svn: 225811
2015-01-13 18:25:05 +00:00
Hal Finkel 821befd52b [PowerPC] Add StackMap/PatchPoint support
This commit does two things:

 1. Refactors PPCFastISel to use more of the common infrastructure for call
    lowering (this lets us take advantage of this common code for lowering some
    common intrinsics, stackmap/patchpoint among them).

 2. Adds support for stackmap/patchpoint lowering. For the most part, this is
    very similar to the support in the AArch64 target, with the obvious differences
    (different registers, NOP instructions, etc.). The test cases are adapted
    from the AArch64 test cases.

One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).

StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!

llvm-svn: 225808
2015-01-13 17:48:12 +00:00
Hal Finkel f4a22c0d48 [PowerPC] Split the blr definition into BLR and BLR8
We really need a separate 64-bit version of this instruction so that it can be
marked as clobbering LR8 (instead of just LR). No change in functionality
(although the verifier might be slightly happier), however, it is required for
stackmap/patchpoint support. Thus, this will be covered by stackmap test cases
once those are added.

llvm-svn: 225804
2015-01-13 17:47:54 +00:00
Justin Hibbits 654346e6f9 Fully fix Bug #22115.
Summary:
In the previous commit, the register was saved, but space was not allocated.
This resulted in the parameter save area potentially clobbering r30, leading to
nasty results.

Test Plan: Tests updated

Reviewers: hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6906

llvm-svn: 225573
2015-01-10 01:57:21 +00:00
Justin Hibbits 98a532dd8e Add saving and restoring of r30 to the prologue and epilogue, respectively
Summary: The PIC additions didn't update the prologue and epilogue code to save and restore r30 (PIC base register).  This does that.

Test Plan: Tests updated.

Reviewers: hfinkel

Reviewed By: hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6876

llvm-svn: 225450
2015-01-08 15:47:19 +00:00
Jay Foad 1f0a44e662 [PowerPC] Fix unwind info with dynamic stack realignment
Summary:
PowerPC DWARF unwind info defined CFA as SP + offset even in a function
where the stack had been dynamically realigned. This clearly doesn't
work because the offset from SP to CFA is not a constant. Fix it by
defining CFA as BP instead.

This was causing the AddressSanitizer null_deref test to fail 50% of
the time, depending on whether SP happened to be 32-byte aligned on
entry to a particular function or not.

Reviewers: willschm, uweigand, hfinkel

Reviewed By: hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6410

llvm-svn: 222996
2014-12-01 09:42:32 +00:00
Eric Christopher fc6de428c8 Have MachineFunction cache a pointer to the subtarget to make lookups
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.

Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.

llvm-svn: 214838
2014-08-05 02:39:49 +00:00
Eric Christopher d913448b38 Remove the TargetMachine forwards for TargetSubtargetInfo based
information and update all callers. No functional change.

llvm-svn: 214781
2014-08-04 21:25:23 +00:00
Ulrich Weigand be928cc276 [PowerPC] ELFv2 explicit CFI for CR fields
This is a minor improvement in the ELFv2 ABI.   In ELFv1, DWARF CFI
would represent a saved CR word (holding CR fields CR2, CR3, and CR4)
using just a single CFI record refering to CR2.   In ELFv2 instead,
each of the CR fields is represented by its own CFI record.  The
advantage is that the compiler can now chose to save just a single
(or two) CR fields instead of all of them, if those are the only ones
that actually need saving.  That can lead to more efficient code using
mf(o)crf instead of the (slow) mfcr instruction.

Note that this patch does not (yet) implement this more efficient
code generation, but it does implement the part that is required to
be ABI compliant: creating multiple CFI records if multiple CR fields
are saved.

Reviewed by Hal Finkel.

llvm-svn: 213492
2014-07-21 00:03:18 +00:00
Ulrich Weigand 8658f17eef [PowerPC] ELFv2 stack space reduction
The ELFv2 ABI reduces the amount of stack required to implement an
ABI-compliant function call in two ways:
* the "linkage area" is reduced from 48 bytes to 32 bytes by
  eliminating two unused doublewords
* the 64-byte "parameter save area" is now optional and need not be
  present in certain cases (it remains mandatory in functions with
  variable arguments, and functions that have any parameter that is
  passed on the stack)

The following patch implements this required changes:
- reducing the linkage area, and associated relocation of the TOC save
  slot, in getLinkageSize / getTOCSaveOffset (this requires updating all
  callers of these routines to pass in the isELFv2ABI flag).
- (partially) handling the case where the parameter save are is optional

This latter part requires some extra explanation:  Currently, we still
always allocate the parameter save area when *calling* a function.
That is certainly always compliant with the ABI, but may cause code to
allocate stack unnecessarily.  This can be addressed by a follow-on
optimization patch.

On the *callee* side, in LowerFormalArguments, we *must* track
correctly whether the ABI guarantees that the caller has allocated
the parameter save area for our use, and the patch does so. However,
there is one complication: the code that handles incoming "byval"
arguments will currently *always* write to the parameter save area,
because it has to force incoming register arguments to the stack since
it must return an *address* to implement the byval semantics.

To fix this, the patch changes the LowerFormalArguments code to write
arguments to a freshly allocated stack slot on the function's own stack
frame instead of the argument save area in those cases where that area
is not present.

Reviewed by Hal Finkel.

llvm-svn: 213490
2014-07-20 23:43:15 +00:00
Hal Finkel 3ee2af7d1c [PowerPC] 32-bit ELF PIC support
This adds initial support for PPC32 ELF PIC (Position Independent Code; the
-fPIC variety), thus rectifying a long-standing deficiency in the PowerPC
backend.

Patch by Justin Hibbits!

llvm-svn: 213427
2014-07-18 23:29:49 +00:00
Ulrich Weigand 8ca988f31a [PowerPC] Refactor getMinCallFrameSize / getMinCallArgumentsSize
As of r211495, the only remaining users of getMinCallFrameSize are in
core ABI code (LowerFormalParameter / LowerCall).  This is actually a
good thing, since the details of the parameter save area are ABI specific.

With the new ELFv2 ABI in particular, the rules defining the size of the
save area will become significantly more complex, so it wouldn't make
sense to implement those outside ABI code that has all required
information.

In preparation, this patch eliminates the getMinCallFrameSize (and
associated getMinCallArgumentsSize) routines, and inlines them into all
callers.  Note that since nearly all call arguments are constant, this
allows simplifying the inlined copies to a single line everywhere.

No change in generate code expected.

llvm-svn: 211497
2014-06-23 14:15:53 +00:00
Ulrich Weigand f316e1db75 [PowerPC] Allow stack frames without parameter save area
The PPCFrameLowering::determineFrameLayout routine currently ensures
that every function that allocates a stack frame provides space for the
parameter save area (via PPCFrameLowering::getMinCallFrameSize).

This is actually not necessary.  There may be functions that never call
another routine but still allocate a frame; those do not require the
parameter save area.  In the future, with the ELFv2 ABI, even some
routines that do call other functions do not need to allocate the
parameter save area.

While it is not a bug to allocate the parameter area when it is not
needed, it is better to avoid it to save stack space.

Note that when any particular function call requires the parameter save
area, this space will already have been included by ABI code in the size
the CALLSEQ_START insn is annotated with, and therefore included in the
size returned by MFI->getMaxCallFrameSize().

This means that determineFrameLayout simply does not need to care about
the parameter save area.  (It still needs to ensure that every frame
provides the linkage area.)  This is implemented by this patch.

Note that this exposed a bug in the new fast-isel code where the parameter
area was *not* included in the CALLSEQ_START size; this is also fixed.

A couple of test cases needed to be adapted for the new (smaller) stack
frame size those tests now see.

llvm-svn: 211495
2014-06-23 13:47:52 +00:00
Eric Christopher d104c31fc0 Move PPCFrameLowering into PPCSubtarget from PPCTargetMachine. Use
the initializeSubtargetDependencies code to obtain an initialized
subtarget and migrate a couple of subtarget using functions to the
.cpp file to avoid circular includes.

llvm-svn: 210822
2014-06-12 20:54:11 +00:00
Eric Christopher 612bb69bf7 None of these targets actually define their own CFI_INSTRUCTION
opcode so there's no reason to use the target namespace for it
rather than TargetOpcode.

llvm-svn: 207475
2014-04-29 00:16:46 +00:00
Eric Christopher d17374919b 80-column, tab characters, comment fixups.
llvm-svn: 207473
2014-04-29 00:16:40 +00:00
Rafael Espindola b1f25f1b93 Replace PROLOG_LABEL with a new CFI_INSTRUCTION.
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.

The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.

The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.

I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.

The net result is that we don't create temporary labels that are never used.

llvm-svn: 203204
2014-03-07 06:08:31 +00:00
Bill Schmidt f381afc906 [PowerPC] More refactoring prior to real PPC emitPrologue/Epilogue changes.
(Patch committed on behalf of Mark Minich, whose log entry follows.)

This is a continuation of the refactorings performed in svn rev 188573
(see that rev's comments for more detail).

This is my stage 2 refactoring: I combined the emitPrologue() &
emitEpilogue() PPC32 & PPC64 code into a single flow, simplifying a
lot of the code since in essence the PPC32 & PPC64 code generation
logic is the same, only the instruction forms are different (in most
cases). This simplification is necessary because my functional changes
(yet to come) add significant complexity, and without the
simplification of my stage 2 refactoring, the overall complexity of
both emitPrologue() & emitEpilogue() would have become almost
intractable for most mortal programmers (like me).

This submission was intended to be a pure refactoring (no functional
changes whatsoever). However, in the process of combining the PPC32 &
PPC64 flows, I spotted a difference that I believe is a bug (see svn
rev 186478 line 863, or svn rev 188573 line 888): This line appears to
be restoring the BP with the original FP content, not the original BP
content. When I merged the 32-bit and 64-bit code, I used the
corresponding code from the 64-bit flow, which I believe uses the
correct offset (BPOffset) for this operation.

llvm-svn: 188741
2013-08-20 03:12:23 +00:00
Bill Schmidt 8893a3d159 [PowerPC] Preparatory refactoring for making prologue and epilogue
safe on PPC32 SVR4 ABI

[Patch and following text by Mark Minich; committing on his behalf.]

There are FIXME's in PowerPC/PPCFrameLowering.cpp, method
PPCFrameLowering::emitPrologue() related to "negative offsets of R1"
on PPC32 SVR4. They're true, but the real issue is that on PPC32 SVR4
(and any ABI without a Red Zone), no spills may be made until after
the stackframe is claimed, which also includes the LR spill which is
at a positive offset. The same problem exists in emitEpilogue(),
though there's no FIXME for it. I intend to fix this issue, making
LLVM-compiled code finally safe for use on SVR4/EABI/e500 32-bit
platforms (including in particular, OS-free embedded systems & kernel
code, where interrupts may share the same stack as user code).

In preparation for making these changes, to make the diffs for the
functional changes less cluttered, I am providing the non-functional
refactorings in two stages:

Stage 1 does some minor fluffy refactorings to pull multiple method
calls up into a single bool, creating named bools for repeated uses of
obscure logic, moving some code up earlier because either stage 2 or
my final version will require it earlier, and rewording/adding some
comments. My stage 1 changes can be characterized as primarily fluffy
cleanup, the purpose of which may be unclear until the stage 2 or
final changes are made.

My stage 2 refactorings combine the separate PPC32 & PPC64 logic,
which is currently performed by largely duplicate code, into a single
flow, with the differences handled by a group of constants initialized
early in the methods.

This submission is for my stage 1 changes. There should be no
functional changes whatsoever; this is a pure refactoring.

llvm-svn: 188573
2013-08-16 20:05:04 +00:00
Hal Finkel 1860763c76 PPC: Support dynamic allocas with large alignment
Support for dynamic stack alignments in the PPC backend has been unfinished, in
part because it depends on dynamic stack realignment (which I only just
recently implemented fully). Now we can also support dynamic allocas with
higher than the default target stack alignment (16 bytes).

In order to round-up the requested size to the maximum requested alignment, we
need an additional register to hold the rounded-up size. We're already using one
scavenged register to hold the previous stack-pointer value (which needs to be
stored with the signal-safe stdux update), and so when we have dynamic allocas
and a large alignment, we allocate two emergency spill slots for the scavenger.

llvm-svn: 186562
2013-07-18 04:28:21 +00:00
Hal Finkel f05d6c7843 PPC: Add base-pointer support to builtin setjmp/longjmp
First, this changes the base-pointer implementation to remove an unnecessary
complication (and one that is incompatible with how builtin SjLj is
implemented): instead of using r31 as the base pointer when it is not needed as
a frame pointer, now the base pointer will always be r30 when needed.

Second, we introduce another pseudo register, BP, which is used just like the FP
pseudo register to refer to the base register before we know for certain what
register it will be.

Third, we now save BP into the jmp_buf, and restore r30 from that slot in
longjmp.  If the function that called setjmp did not use a base pointer, then
r30 will be overwritten by the setjmp-calling-function's restore code. FP
restoration (which is restored into r31) works the same way.

llvm-svn: 186545
2013-07-17 23:50:51 +00:00
Hal Finkel a7c54e8cf4 PPC: Implement base pointer and stack realignment
This builds on some frame-lowering code that has existed since 2005 (r24224)
but was disabled in 2008 (r48188) because it needed base pointer support to
function correctly. This implementation follows the strategy suggested by Dale
Johannesen in r48188 where the following comment was added:

  This does not currently work, because the delta between old and new stack
  pointers is added to offsets that reference incoming parameters after the
  prolog is generated, and the code that does that doesn't handle a variable
  delta.  You don't want to do that anyway; a better approach is to reserve
  another register that retains to the incoming stack pointer, and reference
  parameters relative to that.

And now we do exactly that. If we don't need a frame pointer, then we use r31
as a base pointer. If we do need a frame pointer, then we use r30 as a base
pointer. The base pointer retains the value of the stack pointer before it was
decremented in the prologue. We then use the base pointer to resolve all
negative frame indicies. The basic scheme follows that for base pointers in the
X86 backend.

We use a base pointer when we need to dynamically realign the incoming stack
pointer. This currently applies only to static objects (dynamic allocas with
large alignments, and base-pointer support in SjLj lowering will come in future
commits).

llvm-svn: 186478
2013-07-17 00:45:52 +00:00
Craig Topper b94011fd28 Use SmallVectorImpl& instead of SmallVector to avoid repeating small vector size.
llvm-svn: 186274
2013-07-14 04:42:23 +00:00
Ulrich Weigand 49f487e6cd [PowerPC] Use mtocrf when available
Just as with mfocrf, it is also preferable to use mtocrf instead of
mtcrf when only a single CR register is to be written.

Current code however always emits mtcrf.  This probably does not matter
when using an external assembler, since the GNU assembler will in fact
automatically replace mtcrf with mtocrf when possible.  It does create
inefficient code with the integrated assembler, however.

To fix this, this patch adds MTOCRF/MTOCRF8 instruction patterns and
uses those instead of MTCRF/MTCRF8 everything.  Just as done in the
MFOCRF patch committed as 185556, these patterns will be converted
back to MTCRF if MTOCRF is not available on the machine.

As a side effect, this allows to modify the MTCRF pattern to accept
the full range of mask operands for the benefit of the asm parser.

llvm-svn: 185561
2013-07-03 17:59:07 +00:00
Hal Finkel ac1a24b508 PPC: Ignore spill/restore requests for VRSAVE (except on Darwin)
This fixes PR16418, which reports that a function calling
__builtin_unwind_init() asserts. The cause is that this generates a
spill/restore for VRSAVE, and we support that only on Darwin (because VRSAVE is
only really used on Darwin).

The test case checks only that we don't crash. We can add correctness checks
once someone verifies what behavior the function is supposed to have.

llvm-svn: 185235
2013-06-28 22:29:56 +00:00
Bill Wendling bc07a8900c Use pointers to the MCAsmInfo and MCRegInfo.
Someone may want to do something crazy, like replace these objects if they
change or something.

No functionality change intended.

llvm-svn: 184175
2013-06-18 07:20:20 +00:00
Rafael Espindola b08d2c2db0 Remove addFrameMove.
Now that we have good testing, remove addFrameMove and create cfi
instructions directly.

llvm-svn: 182052
2013-05-16 21:02:15 +00:00
Ulrich Weigand 9d980cbdb9 [PowerPC] Use true offset value in "memrix" machine operands
This is the second part of the change to always return "true"
offset values from getPreIndexedAddressParts, tackling the
case of "memrix" type operands.

This is about instructions like LD/STD that only have a 14-bit
field to encode immediate offsets, which are implicitly extended
by two zero bits by the machine, so that in effect we can access
16-bit offsets as long as they are a multiple of 4.

The PowerPC back end currently handles such instructions by
carrying the 14-bit value (as it will get encoded into the
actual machine instructions) in the machine operand fields
for such instructions.  This means that those values are
in fact not the true offset, but rather the offset divided
by 4 (and then truncated to an unsigned 14-bit value).

Like in the case fixed in r182012, this makes common code
operations on such offset values not work as expected.
Furthermore, there doesn't really appear to be any strong
reason why we should encode machine operands this way.

This patch therefore changes the encoding of "memrix" type
machine operands to simply contain the "true" offset value
as a signed immediate value, while enforcing the rules that
it must fit in a 16-bit signed value and must also be a
multiple of 4.

This change must be made simultaneously in all places that
access machine operands of this type.  However, just about
all those changes make the code simpler; in many cases we
can now just share the same code for memri and memrix
operands.

llvm-svn: 182032
2013-05-16 17:58:02 +00:00
Rafael Espindola 6e8c0d94f8 Removed dead code.
llvm-svn: 181975
2013-05-16 03:34:58 +00:00
Bill Schmidt ef3d1a24ed PPC32: Fix stack collision between FP and CR save areas.
The changes to CR spill handling missed a case for 32-bit PowerPC.
The code in PPCFrameLowering::processFunctionBeforeFrameFinalized()
checks whether CR spill has occurred using a flag in the function
info.  This flag is only set by storeRegToStackSlot and
loadRegFromStackSlot.  spillCalleeSavedRegisters does not call
storeRegToStackSlot, but instead produces MI directly.  Thus we don't
see the CR is spilled when assigning frame offsets, and the CR spill
ends up colliding with some other location (generally the FP slot).

This patch sets the flag in spillCalleeSavedRegisters for PPC32 so
that the CR spill is properly detected and gets its own slot in the
stack frame.

llvm-svn: 181800
2013-05-14 16:08:32 +00:00
Rafael Espindola 1b09836bc3 Change getFrameMoves to return a const reference.
To add a frame now there is a dedicated addFrameMove which also takes
care of constructing the move itself.

llvm-svn: 181657
2013-05-11 02:38:11 +00:00
Hal Finkel 6736988ae2 Fix PPC64 CR spill location for callee-saved registers
This fixes an ABI bug for non-Darwin PPC64. For the callee-saved condition
registers, the spill location is specified relative to the stack pointer (SP +
8). However, this is not relative to the SP after the new stack frame is
established, but instead relative to the caller's stack pointer (it is stored
into the linkage area of the parent's stack frame).

So, like with the link register, we don't directly spill the CRs with other
callee-saved registers, but just mark them to be spilled during prologue
generation.

In practice, this reverts r179457 for PPC64 (but leaves it in place for PPC32).

llvm-svn: 179500
2013-04-15 02:07:05 +00:00
Hal Finkel 2f29391504 Mark all PPC CR registers to be spilled as live-in and tag MFCR appropriately
Leaving MFCR has having unmodeled side effects is not enough to prevent
unwanted instruction reordering post-RA. We could probably apply a stronger
barrier attribute, but there is a better way: Add all (not just the first) CR
to be spilled as live-in to the entry block, and add all CRs to the MFCR
instruction as implicitly killed.

Unfortunately, I don't have a small test case.

llvm-svn: 179465
2013-04-13 23:06:15 +00:00
Hal Finkel d85a04b3df Spill and restore PPC CR registers using the FP when we have one
For functions that need to spill CRs, and have dynamic stack allocations, the
value of the SP during the restore is not what it was during the save, and so
we need to use the FP in these cases (as for all of the other spills and
restores, but the CR restore has a special code path because its reserved slot,
like the link register, is specified directly relative to the adjusted SP).

llvm-svn: 179457
2013-04-13 08:09:20 +00:00
Hal Finkel 035b4825ce Cleanup PPC CR-spill kill flags and 32- vs. 64-bit instructions
There were a few places where kill flags were not being set correctly, and
where 32-bit instruction variants were being used with 64-bit registers. After
r178180, this code was being triggered causing llc to assert.

llvm-svn: 178220
2013-03-28 03:38:16 +00:00
Hal Finkel feea653974 PPC: Use HWEncoding and TRI->getEncodingValue
As pointed out by Jakob, we don't need to maintain a separate
register-numbering table. Instead we should let TableGen generate the table for
us from the information (already present) in PPCRegisterInfo.td.
TRI->getEncodingValue is now used to access register-encoding values.

No functionality change intended.

llvm-svn: 178067
2013-03-26 20:08:20 +00:00
Hal Finkel 0dfbb05aff Use multiple virtual registers in PPC CR spilling
Now that the register scavenger can support multiple spill slots, and PEI can
use virtual-register-based scavenging for multiple simultaneous registers, we
can use a virtual register for the transfer register in the CR spilling code.

This should eliminate the last place (outside of the prologue/epilogue) where
we depend on the unconditional availability of the r0 register. We will soon be
able to allocate it (in a somewhat restricted sense) as a GPR.

llvm-svn: 178060
2013-03-26 18:57:22 +00:00
Hal Finkel cc1eeda16d Note in PPCFunctionInfo VRSAVE spills
In preparation for using the new register scavenger capability for providing
more than one register simultaneously, specifically note functions that have
spilled VRSAVE (currently, this can happen only in functions that use the
setjmp intrinsic). As with CR spilling, such functions will need to provide two
emergency spill slots to the scavenger.

No functionality change intended.

llvm-svn: 177832
2013-03-23 22:06:03 +00:00
Hal Finkel 9e331c2f9c Allow the register scavenger to spill multiple registers
This patch lets the register scavenger make use of multiple spill slots in
order to guarantee that it will be able to provide multiple registers
simultaneously.

To support this, the RS's API has changed slightly: setScavengingFrameIndex /
getScavengingFrameIndex have been replaced by addScavengingFrameIndex /
isScavengingFrameIndex / getScavengingFrameIndices.

In forthcoming commits, the PowerPC backend will use this capability in order
to implement the spilling of condition registers, and some special-purpose
registers, without relying on r0 being reserved. In some cases, spilling these
registers requires two GPRs: one for addressing and one to hold the value being
transferred.

llvm-svn: 177774
2013-03-22 23:32:27 +00:00
Hal Finkel aa03c03a2d Correct PPC FRAMEADDR lowering using a pseudo-register
The old code used to lower FRAMEADDR tried to replicate the logic in the real
frame-lowering code that determines whether or not the frame pointer (r31) will
be used. When it seemed as through the frame pointer would not be used, the
stack pointer (r1) was used instead. Unfortunately, because the stack size is
not yet known, this does not work. Instead, this change introduces new
always-reserved pseudo-registers (FP and FP8) that are replaced during prologue
insertion with the real frame-pointer register (either r1 or r31).

It is important that this intrinsic always return a valid frame address because
it is used by Clang to store the frame address as part of code generation for
__builtin_setjmp.

llvm-svn: 177653
2013-03-21 19:03:19 +00:00
Hal Finkel fcc51d4ff1 Improve PPC VR (Altivec) register spilling
This change cleans up two issues with Altivec register spilling:

  1. The spilling code was inefficient (using two instructions, and add and a
     load, when just one would do)

  2. The code assumed that r0 would always be available (true for now, but this
     will change)

The new code handles VR spilling just like GPR spills but forced into r+r mode.
As a result, when any VR spills are present, we must now always allocate the
register-scavenger spill slot.

llvm-svn: 177231
2013-03-17 04:43:44 +00:00
Hal Finkel bb420f10e9 Allocate the RS spill slot for any PPC function with spills and a large stack frame
For spills into a large stack frame, the FI-elimination code uses the register
scavenger to obtain a free GPR for use with an r+r-addressed load or store.
When there are no available GPRs, the scavenger gets one by using its spill
slot. Previously, we were not always allocating that spill slot and the RS
would assert when the spill slot was needed.

I don't currently have a small test that triggered the assert, but I've
created a small regression test that verifies that the spill slot is now
added when the stack frame is sufficiently large.

llvm-svn: 177140
2013-03-15 05:06:04 +00:00
Hal Finkel 5a765fddb0 Provide the register scavenger to processFunctionBeforeFrameFinalized
Add the current PEI register scavenger as a parameter to the
processFunctionBeforeFrameFinalized callback.

This change is necessary in order to allow the PowerPC target code to
set the register scavenger frame index after the save-area offset
adjustments performed by processFunctionBeforeFrameFinalized. Only
after these adjustments have been made is it possible to estimate
the size of the stack frame.

llvm-svn: 177108
2013-03-14 20:33:40 +00:00
Hal Finkel e987a311ba Not all PPC functions with a frame pointer need a RS spill slot
We used to add a spill slot for the register scavenger whenever the function
has a frame pointer. This is unnecessarily conservative: We may need the spill
slot for dynamic stack allocations, and functions with dynamic stack
allocations always have a FP, but we might also have a FP for other reasons
(such as the user explicitly disabling frame-pointer elimination), and we don't
necessarily need a spill slot for those functions.

The structsinregs test needed adjustment because it disables FP elimination.

llvm-svn: 177106
2013-03-14 19:34:32 +00:00
Bill Schmidt 8ea7af8e44 Fix PR15332 (patch by Florian Zeitz).
There's no need to generate a stack frame for PPC32 SVR4 when there are
no local variables assigned to the stack, i.e., when no red zone is needed.
(PPC64 supports a red zone, but PPC32 does not.)

llvm-svn: 176124
2013-02-26 21:28:57 +00:00
Bill Schmidt c68c6df884 Fix PR14364.
This removes a const_cast hack from PPCRegisterInfo::hasReservedSpillSlot().
The proper place to save the frame index for the CR spill slot is in the
PPCFunctionInfo object, not the PPCRegisterInfo object.

No new test cases, as this just reimplements existing function.  Existing
tests such as test/CodeGen/PowerPC/crsave.ll are sufficient.

llvm-svn: 175998
2013-02-24 17:34:50 +00:00
Eli Bendersky 8da87163ca Move the eliminateCallFramePseudoInstr method from TargetRegisterInfo
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.

There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.

The refactoring was OK'd by Anton Korobeynikov on llvmdev.

Note: this touches the target interfaces, so out-of-tree targets may
be affected.

llvm-svn: 175788
2013-02-21 20:05:00 +00:00
Jakob Stoklund Olesen bf034dbd32 Avoid using MRI::liveout_iterator for computing VRSAVEs.
The liveout lists are about to be removed from MRI, this is the only
place they were used after register allocation.

Get the live out V registers directly from the return instructions
instead.

llvm-svn: 174399
2013-02-05 17:40:36 +00:00
Chandler Carruth 9fb823bbd4 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00
Bill Wendling 698e84fc4f Remove the Function::getFnAttributes method in favor of using the AttributeSet
directly.

This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.

llvm-svn: 171253
2012-12-30 10:32:01 +00:00
Bill Wendling 3d7b0b8ac7 Rename the 'Attributes' class to 'Attribute'. It's going to represent a single attribute in the future.
llvm-svn: 170502
2012-12-19 07:18:57 +00:00
Chandler Carruth ed0881b2a6 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

llvm-svn: 169131
2012-12-03 16:50:05 +00:00
Bill Schmidt 38d9458720 The PowerPC VRSAVE register has been somewhat of an odd beast since
the Altivec extensions were introduced.  Its use is optional, and
allows the compiler to communicate to the operating system which
vector registers should be saved and restored during a context switch.
In practice, this information is ignored by the various operating
systems using the SVR4 ABI; the kernel saves and restores the entire
register state.  Setting the VRSAVE register is no longer performed by
the AIX XL compilers, the IBM i compilers, or by GCC on Power Linux
systems.  It seems best to avoid this logic within LLVM as well.

This patch avoids generating code to update and restore VRSAVE for the
PowerPC SVR4 ABIs (32- and 64-bit).  The code remains in place for the
Darwin ABI.

llvm-svn: 165656
2012-10-10 20:54:15 +00:00
Bill Wendling c9b22d735a Create enums for the different attributes.
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.

llvm-svn: 165488
2012-10-09 07:45:08 +00:00
Bill Wendling 863bab689a Remove the `hasFnAttr' method from Function.
The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.

llvm-svn: 164725
2012-09-26 21:48:26 +00:00
Roman Divacky c9e23d93ae This patch corrects logic in PPCFrameLowering for save and restore of
nonvolatile condition register fields across calls under the SVR4 ABIs.                                            
                                                                                                                   
 * With the 64-bit ABI, the save location is at a fixed offset of 8 from                                           
the stack pointer.  The frame pointer cannot be used to access this                                                
portion of the stack frame since the distance from the frame pointer may                                           
change with alloca calls.                                                                                          
                                                                                                                   
 * With the 32-bit ABI, the save location is just below the general
register save area, and is accessed via the frame pointer like the rest
of the save areas.  This is an optional slot, so it must only be created                                           
if any of CR2, CR3, and CR4 were modified.                                                                      
                                                                                                                   
 * For both ABIs, save/restore logic is generated only if one of the     
nonvolatile CR fields were modified.                                   

I also took this opportunity to clean up an extra FIXME in
PPCFrameLowering.h.  Save area offsets for 32-bit GPRs are meaningless
for the 64-bit ABI, so I removed them for correctness and efficiency.


Fixes PR13708 and partially also PR13623. It lets us enable exception handling
on PPC64.

Patch by William J. Schmidt!

llvm-svn: 163713
2012-09-12 14:47:47 +00:00
Hal Finkel 1cc27e44a4 Add support for generating reg+reg preinc stores on PPC.
PPC will now generate STWUX and friends.

llvm-svn: 158698
2012-06-19 02:34:32 +00:00
Hal Finkel 66b0c93553 Add a FIXME about access to negative stack-pointer offsets on PPC32.
The current code will generate a prologue which starts with something like:
        mflr 0
        stw 31, -4(1)
        stw 0, 4(1)
        stwu 1, -16(1)

But under the PPC32 SVR4 ABI, access to negative offsets from R1 is not allowed.

This was pointed out by Peter Bergner.

llvm-svn: 157133
2012-05-19 21:52:55 +00:00
Craig Topper abadc660e0 Convert some uses of XXXRegisterClass to &XXXRegClass. No functional change since they are equivalent.
llvm-svn: 155186
2012-04-20 06:31:50 +00:00
Craig Topper ca658c2264 Use uint16_t to store registers and opcode in static tables in the target specific backends.
llvm-svn: 152537
2012-03-11 07:16:55 +00:00
Jia Liu b22310fda6 Emacs-tag and some comment fix for all ARM, CellSPU, Hexagon, MBlaze, MSP430, PPC, PTX, Sparc, X86, XCore.
llvm-svn: 150878
2012-02-18 12:03:15 +00:00
Hal Finkel 692d1fb355 Cleanup stack/frame register define/kill states. This fixes two bugs:
1. The ST*UX instructions that store and update the stack pointer did not set define/kill on R1. This became a problem when I activated post-RA scheduling (and had incorrectly adjusted the Frames-large test).

2. eliminateFrameIndex did not kill its scavenged temporary register, and this could cause the scavenger to exhaust all available registers (and its emergency spill slot) when there were a lot of CR values to spill. The 2010-02-12-saveCR test has been adjusted to check for this.

llvm-svn: 147359
2011-12-30 00:34:00 +00:00
Evan Cheng 7f8e563a69 Add bundle aware API for querying instruction properties and switch the code
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.

For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.

llvm-svn: 146026
2011-12-07 07:15:52 +00:00
Hal Finkel 8f6834dfa5 enable PPC register scavenging by default (update tests and remove some FIXMEs)
llvm-svn: 145819
2011-12-05 17:55:17 +00:00
Nick Lewycky 50f02cb21b Move global variables in TargetMachine into new TargetOptions class. As an API
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.

One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.

llvm-svn: 145714
2011-12-02 22:16:29 +00:00
Benjamin Kramer ff91dd9f07 PPC: Disable moves for all CR subregisters.
Should fix assertion failures on ppc buildbots.

llvm-svn: 143290
2011-10-29 19:43:38 +00:00
Evan Cheng 61d4a20f0f Refactor PPC target to separate MC routines from Target routines.
llvm-svn: 135942
2011-07-25 19:53:23 +00:00
Evan Cheng 67c033e6b8 Move getInitialFrameState from TargetFrameInfo to MCAsmInfo (suggestions for
better location welcome).

llvm-svn: 135438
2011-07-18 22:29:13 +00:00
Rafael Espindola 08600bcf65 Use the dwarf->llvm mapping to print register names in the cfi
directives.

Fixes PR9826.

llvm-svn: 132317
2011-05-30 20:20:15 +00:00
Rafael Espindola fc9bae6f8b Replace the -unwind-tables option with a per function flag. This is more
LTO friendly as we can now correctly merge files compiled with or without
-fasynchronous-unwind-tables.

llvm-svn: 132033
2011-05-25 03:44:17 +00:00
Jakob Stoklund Olesen 4bc5e38960 Teach frame lowering to ignore debug values after the terminators.
llvm-svn: 123399
2011-01-13 21:28:52 +00:00
Anton Korobeynikov 2f93128109 Rename TargetFrameInfo into TargetFrameLowering. Also, put couple of FIXMEs and fixes here and there.
llvm-svn: 123170
2011-01-10 12:39:04 +00:00